These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 33036582)
1. Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography. Cho BH; Lee DY; Park KA; Oh SY; Moon JH; Lee GI; Noh H; Chung JK; Kang MC; Chung MJ BMC Ophthalmol; 2020 Oct; 20(1):407. PubMed ID: 33036582 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based optic disc classification is affected by optic-disc tilt. Nam Y; Kim J; Kim K; Park KA; Kang M; Cho BH; Oh SY; Kee C; Han J; Lee GI; Kang MC; Lee D; Choi Y; Yun HJ; Park H; Kim J; Cho SJ; Chang DK Sci Rep; 2024 Jan; 14(1):498. PubMed ID: 38177229 [TBL] [Abstract][Full Text] [Related]
3. Efficacy for Differentiating Nonglaucomatous Versus Glaucomatous Optic Neuropathy Using Deep Learning Systems. Yang HK; Kim YJ; Sung JY; Kim DH; Kim KG; Hwang JM Am J Ophthalmol; 2020 Aug; 216():140-146. PubMed ID: 32247778 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Li Z; He Y; Keel S; Meng W; Chang RT; He M Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863 [TBL] [Abstract][Full Text] [Related]
5. Development of a deep learning model to distinguish the cause of optic disc atrophy using retinal fundus photography. Lee DK; Choi YJ; Lee SJ; Kang HG; Park YR Sci Rep; 2024 Mar; 14(1):5079. PubMed ID: 38429319 [TBL] [Abstract][Full Text] [Related]
6. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285 [TBL] [Abstract][Full Text] [Related]
8. Automatic computer-aided analysis of optic disc pallor in fundus photographs. Yang HK; Oh JE; Han SB; Kim KG; Hwang JM Acta Ophthalmol; 2019 Jun; 97(4):e519-e525. PubMed ID: 30407733 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning and Transfer Learning for Optic Disc Laterality Detection: Implications for Machine Learning in Neuro-Ophthalmology. Liu TYA; Ting DSW; Yi PH; Wei J; Zhu H; Subramanian PS; Li T; Hui FK; Hager GD; Miller NR J Neuroophthalmol; 2020 Jun; 40(2):178-184. PubMed ID: 31453913 [TBL] [Abstract][Full Text] [Related]
10. Detection of Optic Disc Abnormalities in Color Fundus Photographs Using Deep Learning. Liu TYA; Wei J; Zhu H; Subramanian PS; Myung D; Yi PH; Hui FK; Unberath M; Ting DSW; Miller NR J Neuroophthalmol; 2021 Sep; 41(3):368-374. PubMed ID: 34415271 [TBL] [Abstract][Full Text] [Related]
11. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
12. Myopia-related optic disc and retinal changes in adolescent children from singapore. Samarawickrama C; Mitchell P; Tong L; Gazzard G; Lim L; Wong TY; Saw SM Ophthalmology; 2011 Oct; 118(10):2050-7. PubMed ID: 21820741 [TBL] [Abstract][Full Text] [Related]
13. A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Liu S; Graham SL; Schulz A; Kalloniatis M; Zangerl B; Cai W; Gao Y; Chua B; Arvind H; Grigg J; Chu D; Klistorner A; You Y Ophthalmol Glaucoma; 2018; 1(1):15-22. PubMed ID: 32672627 [TBL] [Abstract][Full Text] [Related]
14. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia. Lee JE; Sung KR; Park JM; Yoon JY; Kang SY; Park SB; Koo HJ Graefes Arch Clin Exp Ophthalmol; 2017 Mar; 255(3):591-598. PubMed ID: 27837279 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Efficacy of Synthetic Optic Disc Images for Detecting Glaucomatous Optic Neuropathy Using Deep Learning. Chaurasia AK; MacGregor S; Craig JE; Mackey DA; Hewitt AW Transl Vis Sci Technol; 2024 Jun; 13(6):1. PubMed ID: 38829624 [TBL] [Abstract][Full Text] [Related]
16. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Medeiros FA; Jammal AA; Thompson AC Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810 [TBL] [Abstract][Full Text] [Related]
17. Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation. Asaoka R; Tanito M; Shibata N; Mitsuhashi K; Nakahara K; Fujino Y; Matsuura M; Murata H; Tokumo K; Kiuchi Y Ophthalmol Glaucoma; 2019; 2(4):224-231. PubMed ID: 32672542 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Models for the Screening of Cognitive Impairment Using Multimodal Fundus Images. Shi XH; Ju L; Dong L; Zhang RH; Shao L; Yan YN; Wang YX; Fu XF; Chen YZ; Ge ZY; Wei WB Ophthalmol Retina; 2024 Jul; 8(7):666-677. PubMed ID: 38280426 [TBL] [Abstract][Full Text] [Related]
19. Gender Prediction for a Multiethnic Population via Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-sectional Study. Betzler BK; Yang HHS; Thakur S; Yu M; Quek TC; Soh ZD; Lee G; Tham YC; Wong TY; Rim TH; Cheng CY JMIR Med Inform; 2021 Aug; 9(8):e25165. PubMed ID: 34402800 [TBL] [Abstract][Full Text] [Related]
20. A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Fu H; Li F; Xu Y; Liao J; Xiong J; Shen J; Liu J; Zhang X; Transl Vis Sci Technol; 2020 Jun; 9(2):33. PubMed ID: 32832206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]