These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33036755)
1. Structural and biochemical characterization of inorganic pyrophosphatase from Homo sapiens. Hu F; Huang Z; Zheng S; Wu Q; Chen Y; Lin H; Huang W; Li L Biochem Biophys Res Commun; 2020 Dec; 533(4):1115-1121. PubMed ID: 33036755 [TBL] [Abstract][Full Text] [Related]
2. Structure of inorganic pyrophosphatase from Helicobacter pylori. Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and structural properties of inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. Chao TC; Huang H; Tsai JY; Huang CY; Sun YJ Proteins; 2006 Nov; 65(3):670-80. PubMed ID: 16988955 [TBL] [Abstract][Full Text] [Related]
4. Structural and biochemical characterization of active sites mutant in human inorganic pyrophosphatase. Zheng S; Zheng C; Chen S; Guo J; Huang L; Huang Z; Xu S; Wu Y; Li S; Lin J; You Y; Hu F Biochim Biophys Acta Gen Subj; 2024 May; 1868(5):130594. PubMed ID: 38428647 [TBL] [Abstract][Full Text] [Related]
5. Site-specific effects of zinc on the activity of family II pyrophosphatase. Zyryanov AB; Tammenkoski M; Salminen A; Kolomiytseva GY; Fabrichniy IP; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Nov; 43(45):14395-402. PubMed ID: 15533044 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii. Liu B; Bartlam M; Gao R; Zhou W; Pang H; Liu Y; Feng Y; Rao Z Biophys J; 2004 Jan; 86(1 Pt 1):420-7. PubMed ID: 14695284 [TBL] [Abstract][Full Text] [Related]
7. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion. Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045 [TBL] [Abstract][Full Text] [Related]
8. X-ray Crystallography and Electron Paramagnetic Resonance Spectroscopy Reveal Active Site Rearrangement of Cold-Adapted Inorganic Pyrophosphatase. Horitani M; Kusubayashi K; Oshima K; Yato A; Sugimoto H; Watanabe K Sci Rep; 2020 Mar; 10(1):4368. PubMed ID: 32152422 [TBL] [Abstract][Full Text] [Related]
9. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum. Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429 [TBL] [Abstract][Full Text] [Related]
10. Effect of Structure Variations in the Inter-subunit Contact Zone on the Activity and Allosteric Regulation of Inorganic Pyrophosphatase from Mycobacterium tuberculosis. Romanov RS; Kurilova SA; Baykov AA; Rodina EV Biochemistry (Mosc); 2020 Mar; 85(3):326-333. PubMed ID: 32564737 [TBL] [Abstract][Full Text] [Related]
11. Structural and kinetic features of family I inorganic pyrophosphatase from Vibrio cholerae. Rodina EV; Samygina VR; Vorobyeva NN; Sitnik TS; Kurilova SA; Nazarova TI Biochemistry (Mosc); 2009 Jul; 74(7):734-42. PubMed ID: 19747093 [TBL] [Abstract][Full Text] [Related]
12. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target. Niu H; Zhu J; Qu Q; Zhou X; Huang X; Du Z Proteins; 2021 Jul; 89(7):853-865. PubMed ID: 33583053 [TBL] [Abstract][Full Text] [Related]
13. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964 [TBL] [Abstract][Full Text] [Related]
14. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides. Jämsen J; Tuominen H; Salminen A; Belogurov GA; Magretova NN; Baykov AA; Lahti R Biochem J; 2007 Dec; 408(3):327-33. PubMed ID: 17714078 [TBL] [Abstract][Full Text] [Related]
15. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies. Samygina VR; Moiseev VM; Rodina EV; Vorobyeva NN; Popov AN; Kurilova SA; Nazarova TI; Avaeva SM; Bartunik HD J Mol Biol; 2007 Mar; 366(4):1305-17. PubMed ID: 17196979 [TBL] [Abstract][Full Text] [Related]
16. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541 [TBL] [Abstract][Full Text] [Related]
17. Structural and Biochemical Characterization of Apicomplexan Inorganic Pyrophosphatases. Jamwal A; Yogavel M; Abdin MZ; Jain SK; Sharma A Sci Rep; 2017 Jul; 7(1):5255. PubMed ID: 28701714 [TBL] [Abstract][Full Text] [Related]
18. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
19. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis. Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976 [TBL] [Abstract][Full Text] [Related]
20. Expression, purification, and characterization of cold-adapted inorganic pyrophosphatase from psychrophilic Shewanella sp. AS-11. Ginting EL; Iwasaki S; Maeganeku C; Motoshima H; Watanabe K Prep Biochem Biotechnol; 2014; 44(5):480-92. PubMed ID: 24397719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]