These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33036755)
41. Spectroscopic analyses of manganese ions effects on the conformational changes of inorganic pyrophosphatase from psychrophilic Shewanella sp. AS-11. Ginting EL; Maeganeku C; Motoshima H; Watanabe K Protein J; 2014 Feb; 33(1):11-7. PubMed ID: 24363149 [TBL] [Abstract][Full Text] [Related]
42. Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure. Asaoka M; Segami S; Maeshima M J Biochem; 2014 Dec; 156(6):333-44. PubMed ID: 25070903 [TBL] [Abstract][Full Text] [Related]
43. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Teplyakov A; Obmolova G; Wilson KS; Ishii K; Kaji H; Samejima T; Kuranova I Protein Sci; 1994 Jul; 3(7):1098-107. PubMed ID: 7920256 [TBL] [Abstract][Full Text] [Related]
44. Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis. Hoelzle K; Peter S; Sidler M; Kramer MM; Wittenbrink MM; Felder KM; Hoelzle LE BMC Microbiol; 2010 Jul; 10():194. PubMed ID: 20646294 [TBL] [Abstract][Full Text] [Related]
45. Changes in E. coli inorganic pyrophosphatase structure induced by binding of metal activators. Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Harutyunyan EH Biochemistry (Mosc); 1998 May; 63(5):592-9. PubMed ID: 9632898 [TBL] [Abstract][Full Text] [Related]
46. Streptococcus gordonii soluble inorganic pyrophosphatase: an important role for the interdomain region in enzyme activity. Ilias M; Young TW Biochim Biophys Acta; 2006 Jul; 1764(7):1299-306. PubMed ID: 16829218 [TBL] [Abstract][Full Text] [Related]
47. Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. Lee CH; Pan YJ; Huang YT; Liu TH; Hsu SH; Lee CH; Chen YW; Lin SM; Huang LK; Pan RL J Biol Chem; 2011 Apr; 286(14):11970-6. PubMed ID: 21292767 [TBL] [Abstract][Full Text] [Related]
48. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
49. Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase. Segami S; Asaoka M; Kinoshita S; Fukuda M; Nakanishi Y; Maeshima M Plant Cell Physiol; 2018 Jul; 59(7):1300-1308. PubMed ID: 29534212 [TBL] [Abstract][Full Text] [Related]
50. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase. Lin HH; Pan YJ; Hsu SH; Van RC; Hsiao YY; Chen JH; Pan RL Arch Biochem Biophys; 2005 Oct; 442(2):206-13. PubMed ID: 16185650 [TBL] [Abstract][Full Text] [Related]
51. Effect of mutation of the conservative glycine residues Gly100 and Gly147 on stability of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):848-57. PubMed ID: 16212540 [TBL] [Abstract][Full Text] [Related]
52. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of Streptococcus mutans pyrophosphatase: a new fold for an old mechanism. Merckel MC; Fabrichniy IP; Salminen A; Kalkkinen N; Baykov AA; Lahti R; Goldman A Structure; 2001 Apr; 9(4):289-97. PubMed ID: 11525166 [TBL] [Abstract][Full Text] [Related]
54. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. Luoto HH; Nordbo E; Baykov AA; Lahti R; Malinen AM J Biol Chem; 2013 Dec; 288(49):35489-99. PubMed ID: 24158447 [TBL] [Abstract][Full Text] [Related]
55. Crystallization and preliminary X-ray analysis of inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Liu B; Li X; Gao R; Zhou W; Xie G; Bartlam M; Pang H; Feng Y; Rao Z Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):577-9. PubMed ID: 14993699 [TBL] [Abstract][Full Text] [Related]
56. The tetrameric structure of nucleotide-regulated pyrophosphatase and its modulation by deletion mutagenesis and ligand binding. Anashkin VA; Salminen A; Orlov VN; Lahti R; Baykov AA Arch Biochem Biophys; 2020 Oct; 692():108537. PubMed ID: 32810477 [TBL] [Abstract][Full Text] [Related]
57. DFT study on the mechanism of Escherichia coli inorganic pyrophosphatase. Yang L; Liao RZ; Yu JG; Liu RZ J Phys Chem B; 2009 May; 113(18):6505-10. PubMed ID: 19366250 [TBL] [Abstract][Full Text] [Related]
58. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase. Anashkin VA; Kirillova EA; Orlov VN; Baykov AA Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891956 [TBL] [Abstract][Full Text] [Related]
59. The structural basis for pyrophosphatase catalysis. Heikinheimo P; Lehtonen J; Baykov A; Lahti R; Cooperman BS; Goldman A Structure; 1996 Dec; 4(12):1491-508. PubMed ID: 8994974 [TBL] [Abstract][Full Text] [Related]
60. ATP as effector of inorganic pyrophosphatase of Escherichia coli. The role of residue Lys112 in binding effectors. Rodina EV; Vorobyeva NN; Kurilova SA; Sitnik TS; Nazarova TI Biochemistry (Mosc); 2007 Jan; 72(1):100-8. PubMed ID: 17309443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]