These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33036980)

  • 1. 3D printed self-supporting elastomeric structures for multifunctional microfluidics.
    Su R; Wen J; Su Q; Wiederoder MS; Koester SJ; Uzarski JR; McAlpine MC
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33036980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.
    Parekh DP; Ladd C; Panich L; Moussa K; Dickey MD
    Lab Chip; 2016 May; 16(10):1812-20. PubMed ID: 27025537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid 3D Printing of Soft Electronics.
    Valentine AD; Busbee TA; Boley JW; Raney JR; Chortos A; Kotikian A; Berrigan JD; Durstock MF; Lewis JA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28875572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet Printed Polyethylene Glycol as a Fugitive Ink for the Fabrication of Flexible Microfluidic Systems.
    Alfadhel A; Ouyang J; Mahajan CG; Forouzandeh F; Cormier D; Borkholder DA
    Mater Des; 2018 Jul; 150():182-187. PubMed ID: 30364619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks.
    Hardin JO; Ober TJ; Valentine AD; Lewis JA
    Adv Mater; 2015 Jun; 27(21):3279-84. PubMed ID: 25885762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.