BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33036980)

  • 1. 3D printed self-supporting elastomeric structures for multifunctional microfluidics.
    Su R; Wen J; Su Q; Wiederoder MS; Koester SJ; Uzarski JR; McAlpine MC
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33036980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.
    Parekh DP; Ladd C; Panich L; Moussa K; Dickey MD
    Lab Chip; 2016 May; 16(10):1812-20. PubMed ID: 27025537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid 3D Printing of Soft Electronics.
    Valentine AD; Busbee TA; Boley JW; Raney JR; Chortos A; Kotikian A; Berrigan JD; Durstock MF; Lewis JA
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28875572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet Printed Polyethylene Glycol as a Fugitive Ink for the Fabrication of Flexible Microfluidic Systems.
    Alfadhel A; Ouyang J; Mahajan CG; Forouzandeh F; Cormier D; Borkholder DA
    Mater Des; 2018 Jul; 150():182-187. PubMed ID: 30364619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks.
    Hardin JO; Ober TJ; Valentine AD; Lewis JA
    Adv Mater; 2015 Jun; 27(21):3279-84. PubMed ID: 25885762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.