BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33036990)

  • 1. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors.
    Shen J; Chen J; Solem C; Jensen PR; Liu JM
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production.
    Shen J; Chen J; Jensen PR; Solem C
    Microb Cell Fact; 2019 Mar; 18(1):51. PubMed ID: 30857537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in
    Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y
    ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
    Bartek T; Blombach B; Lang S; Eikmanns BJ; Wiechert W; Oldiges M; Nöh K; Noack S
    Appl Environ Microbiol; 2011 Sep; 77(18):6644-52. PubMed ID: 21784914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources.
    Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C
    Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in
    Murai K; Sasaki D; Kobayashi S; Yamaguchi A; Uchikura H; Shirai T; Sasaki K; Kondo A; Tsuge Y
    ACS Synth Biol; 2020 Jul; 9(7):1615-1622. PubMed ID: 32602337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source.
    Wittmann C; Kiefer P; Zelder O
    Appl Environ Microbiol; 2004 Dec; 70(12):7277-87. PubMed ID: 15574927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
    Inui M; Kawaguchi H; Murakami S; Vertès AA; Yukawa H
    J Mol Microbiol Biotechnol; 2004; 8(4):243-54. PubMed ID: 16179801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
    Becker J; Klopprogge C; Herold A; Zelder O; Bolten CJ; Wittmann C
    J Biotechnol; 2007 Oct; 132(2):99-109. PubMed ID: 17624457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum.
    Krömer JO; Wittmann C; Schröder H; Heinzle E
    Metab Eng; 2006 Jul; 8(4):353-69. PubMed ID: 16621639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants.
    Siedler S; Lindner SN; Bringer S; Wendisch VF; Bott M
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):143-52. PubMed ID: 22851018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
    Lindner SN; Petrov DP; Hagmann CT; Henrich A; Krämer R; Eikmanns BJ; Wendisch VF; Seibold GM
    Appl Environ Microbiol; 2013 Apr; 79(8):2588-95. PubMed ID: 23396334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
    Ma W; Wang J; Li Y; Hu X; Shi F; Wang X
    Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.