These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33036991)

  • 41. Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes.
    Caro G; Bieber J; Ruiz-Castilla FJ; Michán C; Sychrova H; Ramos J
    World J Microbiol Biotechnol; 2019 Jul; 35(8):124. PubMed ID: 31346773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.
    Nagayoshi Y; Miyazaki T; Shimamura S; Nakayama H; Minematsu A; Yamauchi S; Takazono T; Nakamura S; Yanagihara K; Kohno S; Mukae H; Izumikawa K
    PLoS One; 2017; 12(7):e0180990. PubMed ID: 28700656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential expression of the Candida glabrata CgRTA1 and CgRSB1 genes in response to various stress conditions.
    Kołaczkowska A; Dyląg M; Kołaczkowski M
    Biochem Biophys Res Commun; 2013 Mar; 432(1):169-74. PubMed ID: 23337499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata.
    Santos R; Costa C; Mil-Homens D; Romão D; de Carvalho CC; Pais P; Mira NP; Fialho AM; Teixeira MC
    Cell Microbiol; 2017 May; 19(5):. PubMed ID: 27780306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.
    Linde J; Duggan S; Weber M; Horn F; Sieber P; Hellwig D; Riege K; Marz M; Martin R; Guthke R; Kurzai O
    Nucleic Acids Res; 2015 Feb; 43(3):1392-406. PubMed ID: 25586221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kre29p is a novel nuclear protein involved in DNA repair and mitotic fidelity in Candida glabrata.
    Miyazaki T; Tsai HF; Bennett JE
    Curr Genet; 2006 Jul; 50(1):11-22. PubMed ID: 16775745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata.
    Salazar SB; Wang C; Münsterkötter M; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Lopes MM; Güldener U; Butler G; Mira NP
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29087506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata.
    Vu BG; Thomas GH; Moye-Rowley WS
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The regulation of iron homeostasis in the fungal human pathogen
    Devaux F; Thiébaut A
    Microbiology (Reading); 2019 Oct; 165(10):1041-1060. PubMed ID: 31050635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deletion of CDR1 reveals redox regulation of pleiotropic drug resistance in Candida glabrata.
    Galkina KV; Okamoto M; Chibana H; Knorre DA; Kajiwara S
    Biochimie; 2020 Mar; 170():49-56. PubMed ID: 31843579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations.
    Ng TS; Desa MNM; Sandai D; Chong PP; Than LTL
    Infect Genet Evol; 2016 Jun; 40():331-338. PubMed ID: 26358577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteomics of drug resistance in Candida glabrata biofilms.
    Seneviratne CJ; Wang Y; Jin L; Abiko Y; Samaranayake LP
    Proteomics; 2010 Apr; 10(7):1444-54. PubMed ID: 20127690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Label-free quantitative proteomics in Candida yeast species: technical and biological replicates to assess data reproducibility.
    Lelandais G; Denecker T; Garcia C; Danila N; Léger T; Camadro JM
    BMC Res Notes; 2019 Aug; 12(1):470. PubMed ID: 31370875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Candida glabrata encodes a longer variant of the mating type (MAT) alpha2 gene in the mating type-like MTL3 locus, which can form homodimers.
    Robledo-Márquez K; Gutiérrez-Escobedo G; Yáñez-Carrillo P; Vidal-Aguiar Y; Briones-Martín-Del-Campo M; Orta-Zavalza E; De Las Peñas A; Castaño I
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27650705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cnh1 Na(+) /H(+) antiporter and Ena1 Na(+) -ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata.
    Krauke Y; Sychrova H
    FEMS Yeast Res; 2011 Feb; 11(1):29-41. PubMed ID: 20942808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Efflux Pump Activity in Old Candida glabrata Cells.
    Bhattacharya S; Fries BC
    Antimicrob Agents Chemother; 2018 Mar; 62(3):. PubMed ID: 29311061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Cañas-Villamar I; Gutiérrez-Escobedo G; Juárez-Cepeda J; Robledo-Márquez K; Arroyo-Helguera O; Castaño I; De Las Peñas A
    Microbiology (Reading); 2015 Feb; 161(Pt 2):300-310. PubMed ID: 25479837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction and Use of a Recyclable Marker To Examine the Role of Major Facilitator Superfamily Protein Members in
    Vu BG; Moye-Rowley WS
    mSphere; 2018; 3(2):. PubMed ID: 29600281
    [No Abstract]   [Full Text] [Related]  

  • 60. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis.
    Carapia-Minero N; Castelán-Vega JA; Pérez NO; Rodríguez-Tovar AV
    J Mol Model; 2017 Dec; 24(1):13. PubMed ID: 29248994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.