These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33037111)

  • 1. The phase shift between potential and kinetic energy in human walking.
    Cavagna GA; Legramandi MA
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33037111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of competition walking.
    Cavagna GA; Franzetti P
    J Physiol; 1981 Jun; 315():243-51. PubMed ID: 7310710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanics of walking in children.
    Cavagna GA; Franzetti P; Fuchimoto T
    J Physiol; 1983 Oct; 343():323-39. PubMed ID: 6644619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of gravity in human walking: pendular energy exchange, external work and optimal speed.
    Cavagna GA; Willems PA; Heglund NC
    J Physiol; 2000 Nov; 528(Pt 3):657-68. PubMed ID: 11060138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking in simulated reduced gravity: mechanical energy fluctuations and exchange.
    Griffin TM; Tolani NA; Kram R
    J Appl Physiol (1985); 1999 Jan; 86(1):383-90. PubMed ID: 9887153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure.
    Cavagna GA; Heglund NC; Taylor CR
    Am J Physiol; 1977 Nov; 233(5):R243-61. PubMed ID: 411381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proportional work of lifting the center of mass during walking.
    Duff-Raffaele M; Kerrigan DC; Corcoran PJ; Saini M
    Am J Phys Med Rehabil; 1996; 75(5):375-9. PubMed ID: 8873706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transformation during erect and 'bent-hip, bent-knee' walking by humans with implications for the evolution of bipedalism.
    Wang WJ; Crompton RH; Li Y; Gunther MM
    J Hum Evol; 2003 May; 44(5):563-79. PubMed ID: 12765618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inefficient use of inverted pendulum mechanism during quadrupedal walking in the Japanese macaque.
    Ogihara N; Makishima H; Hirasaki E; Nakatsukasa M
    Primates; 2012 Jan; 53(1):41-8. PubMed ID: 21874286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unstable footwear as a speed-dependent noise-based training gear to exercise inverted pendulum motion during walking.
    Dierick F; Bouché AF; Scohier M; Guille C; Buisseret F
    J Sports Sci; 2018 Dec; 36(24):2818-2826. PubMed ID: 29764290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-normalized internal mechanical work in walking is not impaired in adults with class III obesity.
    Fernández Menéndez A; Uva B; Favre L; Hans D; Borrani F; Malatesta D
    J Appl Physiol (1985); 2020 Jul; 129(1):194-203. PubMed ID: 32584667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?
    Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A
    J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanisms for minimizing energy expenditure in human locomotion.
    Saibene F
    Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of reduced gravity on the preferred walk-run transition speed.
    Kram R; Domingo A; Ferris DP
    J Exp Biol; 1997 Feb; 200(Pt 4):821-6. PubMed ID: 9076966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.