These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33037136)

  • 21. Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma.
    Demosthenous C; Han JJ; Stenson MJ; Maurer MJ; Wellik LE; Link B; Hege K; Dogan A; Sotomayor E; Witzig T; Gupta M
    Oncotarget; 2015 Apr; 6(11):9488-501. PubMed ID: 25839159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic effects of eIF4A and MEK inhibitors on proliferation of NRAS-mutant melanoma cell lines.
    Malka-Mahieu H; Girault I; Rubington M; Leriche M; Welsch C; Kamsu-Kom N; Zhao Q; Desaubry L; Vagner S; Robert C
    Cell Cycle; 2016 Sep; 15(18):2405-9. PubMed ID: 27533468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells.
    Martinelli E; Troiani T; D'Aiuto E; Morgillo F; Vitagliano D; Capasso A; Costantino S; Ciuffreda LP; Merolla F; Vecchione L; De Vriendt V; Tejpar S; Nappi A; Sforza V; Martini G; Berrino L; De Palma R; Ciardiello F
    Int J Cancer; 2013 Nov; 133(9):2089-101. PubMed ID: 23629727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FOXD1-AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway.
    Wu Q; Ma J; Wei J; Meng W; Wang Y; Shi M
    Mol Oncol; 2021 Jan; 15(1):299-316. PubMed ID: 32460412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast eukaryotic initiation factor 4B (eIF4B) enhances complex assembly between eIF4A and eIF4G in vivo.
    Park EH; Walker SE; Zhou F; Lee JM; Rajagopal V; Lorsch JR; Hinnebusch AG
    J Biol Chem; 2013 Jan; 288(4):2340-54. PubMed ID: 23184954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted inhibition of eIF4A suppresses B-cell receptor-induced translation and expression of MYC and MCL1 in chronic lymphocytic leukemia cells.
    Wilmore S; Rogers-Broadway KR; Taylor J; Lemm E; Fell R; Stevenson FK; Forconi F; Steele AJ; Coldwell M; Packham G; Yeomans A
    Cell Mol Life Sci; 2021 Sep; 78(17-18):6337-6349. PubMed ID: 34398253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI.
    Zakowicz H; Yang HS; Stark C; Wlodawer A; Laronde-Leblanc N; Colburn NH
    RNA; 2005 Mar; 11(3):261-74. PubMed ID: 15661843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase.
    Fu X; Creighton CJ; Biswal NC; Kumar V; Shea M; Herrera S; Contreras A; Gutierrez C; Wang T; Nanda S; Giuliano M; Morrison G; Nardone A; Karlin KL; Westbrook TF; Heiser LM; Anur P; Spellman P; Guichard SM; Smith PD; Davies BR; Klinowska T; Lee AV; Mills GB; Rimawi MF; Hilsenbeck SG; Gray JW; Joshi A; Osborne CK; Schiff R
    Breast Cancer Res; 2014 Sep; 16(5):430. PubMed ID: 25212826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translational dysregulation in cancer: eIF4A isoforms and sequence determinants of eIF4A dependence.
    Raza F; Waldron JA; Quesne JL
    Biochem Soc Trans; 2015 Dec; 43(6):1227-33. PubMed ID: 26614665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma.
    Petrich AM; Leshchenko V; Kuo PY; Xia B; Thirukonda VK; Ulahannan N; Gordon S; Fazzari MJ; Ye BH; Sparano JA; Parekh S
    Clin Cancer Res; 2012 May; 18(9):2534-44. PubMed ID: 22338016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A.
    Chu J; Galicia-Vázquez G; Cencic R; Mills JR; Katigbak A; Porco JA; Pelletier J
    Cell Rep; 2016 Jun; 15(11):2340-7. PubMed ID: 27239032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring RNA restructuring in a human cell-free extract reveals eIF4A-dependent and eIF4A-independent unwinding activity.
    O'Sullivan MH; Fraser CS
    J Biol Chem; 2023 Jul; 299(7):104936. PubMed ID: 37331603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation.
    Nguyen TM; Kabotyanski EB; Dou Y; Reineke LC; Zhang P; Zhang XH; Malovannaya A; Jung SY; Mo Q; Roarty KP; Chen Y; Zhang B; Neilson JR; Lloyd RE; Perou CM; Ellis MJ; Rosen JM
    Cancer Res; 2018 Aug; 78(15):4229-4240. PubMed ID: 29844125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. eIF4A alleviates the translational repression mediated by classical secondary structures more than by G-quadruplexes.
    Waldron JA; Raza F; Le Quesne J
    Nucleic Acids Res; 2018 Apr; 46(6):3075-3087. PubMed ID: 29471358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WD Repeat Domain 77 Protein Regulates Translation of E2F1 and E2F3 mRNA.
    Altayyar MA; Sheng X; Wang Z
    Mol Cell Biol; 2020 Nov; 40(24):. PubMed ID: 33020149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma.
    Kayastha F; Herrington NB; Kapadia B; Roychowdhury A; Nanaji N; Kellogg GE; Gartenhaus RB
    Mol Med; 2022 Sep; 28(1):101. PubMed ID: 36058921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.
    Wolfe AL; Singh K; Zhong Y; Drewe P; Rajasekhar VK; Sanghvi VR; Mavrakis KJ; Jiang M; Roderick JE; Van der Meulen J; Schatz JH; Rodrigo CM; Zhao C; Rondou P; de Stanchina E; Teruya-Feldstein J; Kelliher MA; Speleman F; Porco JA; Pelletier J; Rätsch G; Wendel HG
    Nature; 2014 Sep; 513(7516):65-70. PubMed ID: 25079319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of DNA methyltransferase as a novel therapeutic strategy to overcome acquired resistance to dual PI3K/mTOR inhibitors.
    Qian XJ; Li YT; Yu Y; Yang F; Deng R; Ji J; Jiao L; Li X; Wu RY; Chen WD; Feng GK; Zhu XF
    Oncotarget; 2015 Mar; 6(7):5134-46. PubMed ID: 25762617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade.
    Penna I; Molla A; Grazia G; Cleris L; Nicolini G; Perrone F; Picciani B; Del Vecchio M; de Braud F; Mortarini R; Anichini A
    Oncotarget; 2016 Jan; 7(4):3947-65. PubMed ID: 26678033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PTEN deficiency is associated with reduced sensitivity to mTOR inhibitor in human bladder cancer through the unhampered feedback loop driving PI3K/Akt activation.
    Seront E; Pinto A; Bouzin C; Bertrand L; Machiels JP; Feron O
    Br J Cancer; 2013 Sep; 109(6):1586-92. PubMed ID: 23989949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.