BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33037223)

  • 1. Automated quantification of Candida albicans biofilm-related phenotypes reveals additive contributions to biofilm production.
    Dunn MJ; Fillinger RJ; Anderson LM; Anderson MZ
    NPJ Biofilms Microbiomes; 2020 Oct; 6(1):36. PubMed ID: 33037223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii.
    Montelongo-Jauregui D; Saville SP; Lopez-Ribot JL
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation.
    Lee JA; Robbins N; Xie JL; Ketela T; Cowen LE
    PLoS Genet; 2016 Nov; 12(11):e1006452. PubMed ID: 27870871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin.
    Kucharíková S; Tournu H; Lagrou K; Van Dijck P; Bujdáková H
    J Med Microbiol; 2011 Sep; 60(Pt 9):1261-1269. PubMed ID: 21566087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections.
    Scarsini M; Tomasinsig L; Arzese A; D'Este F; Oro D; Skerlavaj B
    Peptides; 2015 Sep; 71():211-21. PubMed ID: 26238597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces.
    Kuhn DM; Chandra J; Mukherjee PK; Ghannoum MA
    Infect Immun; 2002 Feb; 70(2):878-88. PubMed ID: 11796623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
    Winter MB; Salcedo EC; Lohse MB; Hartooni N; Gulati M; Sanchez H; Takagi J; Hube B; Andes DR; Johnson AD; Craik CS; Nobile CJ
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
    Kasetty S; Mould DL; Hogan DA; Nadell CD
    mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.
    Morales DK; Grahl N; Okegbe C; Dietrich LE; Jacobs NJ; Hogan DA
    mBio; 2013 Jan; 4(1):e00526-12. PubMed ID: 23362320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Tooth as a Fungal Niche: Candida albicans Traits in Dental Plaque Isolates.
    Xiang Z; Wakade RS; Ribeiro AA; Hu W; Bittinger K; Simon-Soro A; Kim D; Li J; Krysan DJ; Liu Y; Koo H
    mBio; 2023 Feb; 14(1):e0276922. PubMed ID: 36602308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory role of glycerol in Candida albicans biofilm formation.
    Desai JV; Bruno VM; Ganguly S; Stamper RJ; Mitchell KF; Solis N; Hill EM; Xu W; Filler SG; Andes DR; Fanning S; Lanni F; Mitchell AP
    mBio; 2013 Apr; 4(2):e00637-12. PubMed ID: 23572557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.
    Dutton LC; Nobbs AH; Jepson K; Jepson MA; Vickerman MM; Aqeel Alawfi S; Munro CA; Lamont RJ; Jenkinson HF
    mBio; 2014 Apr; 5(2):e00911. PubMed ID: 24736223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation.
    Pierce CG; Saville SP; Lopez-Ribot JL
    Pathog Dis; 2014 Apr; 70(3):423-31. PubMed ID: 24623598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm production and fungal susceptibility to microglial cells.
    Orsi CF; Borghi E; Colombari B; Neglia RG; Quaglino D; Ardizzoni A; Morace G; Blasi E
    Microb Pathog; 2014; 69-70():20-7. PubMed ID: 24685698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Examination of the genetic variability among biofilm-forming Candida albicans clinical isolates].
    Durán EL; Mujica MT; Jewtuchowicz VM; Finquelievich JL; Pinoni MV; Iovannitti CA
    Rev Iberoam Micol; 2007 Dec; 24(4):268-71. PubMed ID: 18095758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans.
    Montoya C; Kurylec J; Ossa A; Orrego S
    Acta Biomater; 2023 Oct; 170():415-426. PubMed ID: 37625677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion as an important step in the Candida albicans biofilm developmental cycle.
    Uppuluri P; Chaturvedi AK; Srinivasan A; Banerjee M; Ramasubramaniam AK; Köhler JR; Kadosh D; Lopez-Ribot JL
    PLoS Pathog; 2010 Mar; 6(3):e1000828. PubMed ID: 20360962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Glazier VE; Kramara J; Ollinger T; Solis NV; Zarnowski R; Wakade RS; Kim MJ; Weigel GJ; Liang SH; Bennett RJ; Wellington M; Andes DR; Stamnes MA; Filler SG; Krysan DJ
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398495
    [No Abstract]   [Full Text] [Related]  

  • 19. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity.
    Sherry L; Rajendran R; Lappin DF; Borghi E; Perdoni F; Falleni M; Tosi D; Smith K; Williams C; Jones B; Nile CJ; Ramage G
    BMC Microbiol; 2014 Jul; 14():182. PubMed ID: 24996549
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Ponde NO; Lortal L; Ramage G; Naglik JR; Richardson JP
    Crit Rev Microbiol; 2021 Feb; 47(1):91-111. PubMed ID: 33482069
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.