These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 33037409)
41. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Beltran H; Rickman DS; Park K; Chae SS; Sboner A; MacDonald TY; Wang Y; Sheikh KL; Terry S; Tagawa ST; Dhir R; Nelson JB; de la Taille A; Allory Y; Gerstein MB; Perner S; Pienta KJ; Chinnaiyan AM; Wang Y; Collins CC; Gleave ME; Demichelis F; Nanus DM; Rubin MA Cancer Discov; 2011 Nov; 1(6):487-95. PubMed ID: 22389870 [TBL] [Abstract][Full Text] [Related]
42. miR-30a inhibits androgen-independent growth of prostate cancer via targeting MYBL2, FOXD1, and SOX4. Li X; Jiao M; Hu J; Qi M; Zhang J; Zhao M; Liu H; Xiong X; Dong X; Han B Prostate; 2020 Jun; 80(9):674-686. PubMed ID: 32294305 [TBL] [Abstract][Full Text] [Related]
43. RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Labrecque MP; Brown LG; Coleman IM; Lakely B; Brady NJ; Lee JK; Nguyen HM; Li D; Hanratty B; Haffner MC; Rickman DS; True LD; Lin DW; Lam HM; Alumkal JJ; Corey E; Nelson PS; Morrissey C Cancer Res; 2021 Sep; 81(18):4736-4750. PubMed ID: 34312180 [TBL] [Abstract][Full Text] [Related]
44. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. Gui B; Hsieh CL; Kantoff PW; Kibel AS; Jia L PLoS One; 2017; 12(9):e0184166. PubMed ID: 28886115 [TBL] [Abstract][Full Text] [Related]
45. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975 [TBL] [Abstract][Full Text] [Related]
46. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695 [TBL] [Abstract][Full Text] [Related]
47. The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients. Komiya A; Yasuda K; Watanabe A; Fujiuchi Y; Tsuzuki T; Fuse H Mol Clin Oncol; 2013 Mar; 1(2):257-262. PubMed ID: 24649157 [TBL] [Abstract][Full Text] [Related]
48. The Initial Detection and Partial Characterization of Circulating Tumor Cells in Neuroendocrine Prostate Cancer. Beltran H; Jendrisak A; Landers M; Mosquera JM; Kossai M; Louw J; Krupa R; Graf RP; Schreiber NA; Nanus DM; Tagawa ST; Marrinucci D; Dittamore R; Scher HI Clin Cancer Res; 2016 Mar; 22(6):1510-9. PubMed ID: 26671992 [TBL] [Abstract][Full Text] [Related]
49. The Neuropilin-1/PKC axis promotes neuroendocrine differentiation and drug resistance of prostate cancer. Blanc C; Moktefi A; Jolly A; de la Grange P; Gay D; Nicolaiew N; Semprez F; Maillé P; Soyeux P; Firlej V; Vacherot F; Destouches D; Amiche M; Terry S; de la Taille A; Londoño-Vallejo A; Allory Y; Delbé J; Hamma-Kourbali Y Br J Cancer; 2023 Mar; 128(5):918-927. PubMed ID: 36550208 [TBL] [Abstract][Full Text] [Related]
50. Influence of abiraterone acetate on circulating neuromediators in chemotherapy-naïve castration-resistant prostate cancer. von Hardenberg J; Schwartz M; Werner T; Fuxius S; Müller M; Bolenz C; Weiß C; Heinrich E Prostate; 2016 May; 76(7):613-9. PubMed ID: 26779767 [TBL] [Abstract][Full Text] [Related]
52. Influence of abiraterone acetate on neuroendocrine differentiation in chemotherapy-naive metastatic castration-resistant prostate cancer. Dong B; Fan L; Wang Y; Chi C; Ma X; Wang R; Cai W; Shao X; Pan J; Zhu Y; Shangguan X; Xin Z; Hu J; Xie S; Kang X; Zhou L; Xue W Prostate; 2017 May; 77(13):1373-1380. PubMed ID: 28804908 [TBL] [Abstract][Full Text] [Related]
53. Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. Lawrence MG; Obinata D; Sandhu S; Selth LA; Wong SQ; Porter LH; Lister N; Pook D; Pezaro CJ; Goode DL; Rebello RJ; Clark AK; Papargiris M; Van Gramberg J; Hanson AR; Banks P; Wang H; Niranjan B; Keerthikumar S; Hedwards S; Huglo A; Yang R; Henzler C; Li Y; Lopez-Campos F; Castro E; Toivanen R; Azad A; Bolton D; Goad J; Grummet J; Harewood L; Kourambas J; Lawrentschuk N; Moon D; Murphy DG; Sengupta S; Snow R; Thorne H; Mitchell C; Pedersen J; Clouston D; Norden S; Ryan A; Dehm SM; Tilley WD; Pearson RB; Hannan RD; Frydenberg M; Furic L; Taylor RA; Risbridger GP Eur Urol; 2018 Nov; 74(5):562-572. PubMed ID: 30049486 [TBL] [Abstract][Full Text] [Related]
54. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Long Z; Deng L; Li C; He Q; He Y; Hu X; Cai Y; Gan Y Cell Death Dis; 2021 Jan; 12(1):46. PubMed ID: 33414441 [TBL] [Abstract][Full Text] [Related]
55. Overexpression of RACGAP1 by E2F1 Promotes Neuroendocrine Differentiation of Prostate Cancer by Stabilizing EZH2 Expression. Song Z; Cao Q; Guo B; Zhao Y; Li X; Lou N; Zhu C; Luo G; Peng S; Li G; Chen K; Wang Y; Ruan H; Guo Y Aging Dis; 2023 Oct; 14(5):1757-1774. PubMed ID: 37196108 [TBL] [Abstract][Full Text] [Related]
57. Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7). Lin SJ; Chou FJ; Li L; Lin CY; Yeh S; Chang C Cancer Lett; 2017 Jul; 398():62-69. PubMed ID: 28373004 [TBL] [Abstract][Full Text] [Related]
58. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Guan H; You Z; Wang C; Fang F; Peng R; Mao L; Xu B; Chen M Cancer Med; 2019 Apr; 8(4):1474-1485. PubMed ID: 30784214 [TBL] [Abstract][Full Text] [Related]
59. Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug Conjugate in Neuroendocrine Prostate Cancer. DeLucia DC; Cardillo TM; Ang L; Labrecque MP; Zhang A; Hopkins JE; De Sarkar N; Coleman I; da Costa RMG; Corey E; True LD; Haffner MC; Schweizer MT; Morrissey C; Nelson PS; Lee JK Clin Cancer Res; 2021 Feb; 27(3):759-774. PubMed ID: 33199493 [TBL] [Abstract][Full Text] [Related]
60. Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. Santoni M; Conti A; Burattini L; Berardi R; Scarpelli M; Cheng L; Lopez-Beltran A; Cascinu S; Montironi R Biochim Biophys Acta; 2014 Dec; 1846(2):630-7. PubMed ID: 25450825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]