BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33037690)

  • 1. Multi-hypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales.
    Walker AP; Johnson AL; Rogers A; Anderson J; Bridges RA; Fisher RA; Lu D; Ricciuto DM; Serbin SP; Ye M
    Glob Chang Biol; 2021 Feb; 27(4):804-822. PubMed ID: 33037690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No evidence for triose phosphate limitation of light-saturated leaf photosynthesis under current atmospheric CO
    Kumarathunge DP; Medlyn BE; Drake JE; Rogers A; Tjoelker MG
    Plant Cell Environ; 2019 Dec; 42(12):3241-3252. PubMed ID: 31378950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of leaf-level spatial variability in photosynthetic capacity on biochemical parameter estimates using the Farquhar model: a theoretical analysis.
    Chen CP; Zhu XG; Long SP
    Plant Physiol; 2008 Oct; 148(2):1139-47. PubMed ID: 18715955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sensitivity of photosynthesis to O
    Busch FA; Sage RF
    New Phytol; 2017 Feb; 213(3):1036-1051. PubMed ID: 27768823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.
    Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A
    Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terrestrial biosphere models underestimate photosynthetic capacity and CO
    Rogers A; Serbin SP; Ely KS; Sloan VL; Wullschleger SD
    New Phytol; 2017 Dec; 216(4):1090-1103. PubMed ID: 28877330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A roadmap for improving the representation of photosynthesis in Earth system models.
    Rogers A; Medlyn BE; Dukes JS; Bonan G; von Caemmerer S; Dietze MC; Kattge J; Leakey AD; Mercado LM; Niinemets Ü; Prentice IC; Serbin SP; Sitch S; Way DA; Zaehle S
    New Phytol; 2017 Jan; 213(1):22-42. PubMed ID: 27891647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliable estimation of biochemical parameters from C₃ leaf photosynthesis-intercellular carbon dioxide response curves.
    Gu L; Pallardy SG; Tu K; Law BE; Wullschleger SD
    Plant Cell Environ; 2010 Nov; 33(11):1852-74. PubMed ID: 20561254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm.
    Su Y; Zhu G; Miao Z; Feng Q; Chang Z
    Plant Cell Environ; 2009 Dec; 32(12):1710-23. PubMed ID: 19703116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model.
    Han T; Zhu G; Ma J; Wang S; Zhang K; Liu X; Ma T; Shang S; Huang C
    Photosynth Res; 2020 Jan; 143(1):45-66. PubMed ID: 31659624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terrestrial biosphere models may overestimate Arctic CO
    Rogers A; Serbin SP; Ely KS; Wullschleger SD
    New Phytol; 2019 Jul; 223(1):167-179. PubMed ID: 30767227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfing the Hyperbola Equations of the Steady-State Farquhar-von Caemmerer-Berry C
    Miranda-Apodaca J; Marcos-Barbero EL; Morcuende R; Arellano JB
    Bull Math Biol; 2019 Dec; 82(1):3. PubMed ID: 31919660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting photosynthetic carbon dioxide response curves for C(3) leaves.
    Sharkey TD; Bernacchi CJ; Farquhar GD; Singsaas EL
    Plant Cell Environ; 2007 Sep; 30(9):1035-40. PubMed ID: 17661745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of a biochemical model of steady-state photosynthesis.
    Yin X; Busch FA; Struik PC; Sharkey TD
    Plant Cell Environ; 2021 Sep; 44(9):2811-2837. PubMed ID: 33872407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) considering the variation in photosynthesis parameters during development.
    Sun J; Sun J; Feng Z
    Funct Plant Biol; 2015 Nov; 42(11):1036-1044. PubMed ID: 32480743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration.
    Miao Z; Xu M; Lathrop RG; Wang Y
    Plant Cell Environ; 2009 Feb; 32(2):109-22. PubMed ID: 19154228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key knowledge and data gaps in modelling the influence of CO
    Pugh TAM; Müller C; Arneth A; Haverd V; Smith B
    J Plant Physiol; 2016 Sep; 203():3-15. PubMed ID: 27233774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.