These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33037933)

  • 1. Modeling Progressive Damage Accumulation in Bone Remodeling Explains the Thermodynamic Basis of Bone Resorption by Overloading.
    Sego TJ; Hsu YT; Chu TM; Tovar A
    Bull Math Biol; 2020 Oct; 82(10):134. PubMed ID: 33037933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.
    Mengoni M; Ponthot JP
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1367-76. PubMed ID: 24697274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of bone adaptation using damage accumulation.
    Prendergast PJ; Taylor D
    J Biomech; 1994 Aug; 27(8):1067-76. PubMed ID: 8089161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.
    Doblaré M; García JM
    J Biomech; 2001 Sep; 34(9):1157-70. PubMed ID: 11506786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model for repair of fatigue damage and stress fracture in osteonal bone.
    Martin B
    J Orthop Res; 1995 May; 13(3):309-16. PubMed ID: 7602391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical model of the effect of continuum damage on a bone adaptation model.
    Ramtani S; Zidi M
    J Biomech; 2001 Apr; 34(4):471-9. PubMed ID: 11266670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical prediction of peri-implant bone adaptation: Comparison of mechanical stimuli and sensitivity to modeling parameters.
    Piccinini M; Cugnoni J; Botsis J; Ammann P; Wiskott A
    Med Eng Phys; 2016 Nov; 38(11):1348-1359. PubMed ID: 27641659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.
    Ridha H; Almitani KH; Chamekh A; Toumi H; Tavares JM
    Math Biosci; 2015 Apr; 262():46-55. PubMed ID: 25640868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling and numerical solutions for functionally dependent bone remodeling.
    Hart RT; Davy DT; Heiple KG
    Calcif Tissue Int; 1984; 36 Suppl 1():S104-9. PubMed ID: 6430508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of bone reactions to relative motions at implant-bone interfaces.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1993 Nov; 26(11):1271-81. PubMed ID: 8262989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for simulating the bone remodeling process under mechanical stimulus.
    Li J; Li H; Shi L; Fok AS; Ucer C; Devlin H; Horner K; Silikas N
    Dent Mater; 2007 Sep; 23(9):1073-8. PubMed ID: 17137621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of dental bone remodeling induced by implant-supported fixed partial denture with or without cantilever extension.
    Wang C; Li Q; McClean C; Fan Y
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1134-47. PubMed ID: 23873599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An energy dissipation-based model for damage stimulated bone adaptation.
    Levenston ME; Carter DR
    J Biomech; 1998 Jul; 31(7):579-86. PubMed ID: 9796679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural and biomechanical basis of the gain and loss of bone strength in women and men.
    Seeman E
    Endocrinol Metab Clin North Am; 2003 Mar; 32(1):25-38. PubMed ID: 12699291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Bone; 2014 Sep; 66():15-25. PubMed ID: 24882735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
    Müller R
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S25-35. PubMed ID: 15340800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic bone remodelling model based on a continuum damage-repair theory.
    Doblaré M; García JM
    J Biomech; 2002 Jan; 35(1):1-17. PubMed ID: 11747878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.