These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 33037948)
1. Optimized sample preparation for fecal volatile organic compound analysis by gas chromatography-mass spectrometry. El Manouni El Hassani S; Soers RJ; Berkhout DJC; Niemarkt HJ; Weda H; Nijsen T; Benninga MA; de Boer NKH; de Meij TGJ; Knobel HH Metabolomics; 2020 Oct; 16(10):112. PubMed ID: 33037948 [TBL] [Abstract][Full Text] [Related]
2. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040 [TBL] [Abstract][Full Text] [Related]
3. On sample preparation methods for fermented beverage VOCs profiling by GCxGC-TOFMS. Zhang P; Carlin S; Lotti C; Mattivi F; Vrhovsek U Metabolomics; 2020 Sep; 16(10):102. PubMed ID: 32949264 [TBL] [Abstract][Full Text] [Related]
4. Analytical strategies based on multiple headspace extraction for the quantitative analysis of aroma components in mushrooms. San Román I; Alonso ML; Bartolomé L; Alonso RM; Fañanás R Talanta; 2014 Jun; 123():207-17. PubMed ID: 24725884 [TBL] [Abstract][Full Text] [Related]
5. [Recent advances in the application of headspace gas chromatography-mass spectrometry]. Zhang X; Liu W; Lu Y; Lü Y Se Pu; 2018 Oct; 36(10):962-971. PubMed ID: 30378354 [TBL] [Abstract][Full Text] [Related]
6. The approach to sample acquisition and its impact on the derived human fecal microbiome and VOC metabolome. Couch RD; Navarro K; Sikaroodi M; Gillevet P; Forsyth CB; Mutlu E; Engen PA; Keshavarzian A PLoS One; 2013; 8(11):e81163. PubMed ID: 24260553 [TBL] [Abstract][Full Text] [Related]
7. Development of a headspace-solid phase microextraction gas chromatography-high resolution mass spectrometry method for analyzing volatile organic compounds in urine: Application in breast cancer biomarker discovery. Li X; Wen X; Luo Z; Tian Y; Qian C; Zhang J; Ling R; Duan Y Clin Chim Acta; 2023 Feb; 540():117236. PubMed ID: 36716910 [TBL] [Abstract][Full Text] [Related]
8. Optimized Sampling Conditions for Fecal Volatile Organic Compound Analysis by Means of Field Asymmetric Ion Mobility Spectrometry. Bosch S; El Manouni El Hassani S; Covington JA; Wicaksono AN; Bomers MK; Benninga MA; Mulder CJJ; de Boer NKH; de Meij TGJ Anal Chem; 2018 Jul; 90(13):7972-7981. PubMed ID: 29860824 [TBL] [Abstract][Full Text] [Related]
10. Fecal Volatile Organic Compounds in Preterm Infants Are Influenced by Enteral Feeding Composition. El Manouni El Hassani S; Niemarkt HJ; Said H; Berkhout DJC; van Kaam AH; van Lingen RA; Benninga MA; de Boer NKH; de Meij TGJ Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30208643 [TBL] [Abstract][Full Text] [Related]
11. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines. Xiao Z; Zhou X; Niu Y; Yu D; Zhu J; Zhu G J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 978-979():122-30. PubMed ID: 25544009 [TBL] [Abstract][Full Text] [Related]
12. Determination of volatile organic compounds in recycled polyethylene terephthalate and high-density polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. Dutra C; Pezo D; Freire MT; Nerín C; Reyes FG J Chromatogr A; 2011 Mar; 1218(10):1319-30. PubMed ID: 21292271 [TBL] [Abstract][Full Text] [Related]
13. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Tait E; Perry JD; Stanforth SP; Dean JR J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Paula Barros E; Moreira N; Elias Pereira G; Leite SG; Moraes Rezende C; Guedes de Pinho P Talanta; 2012 Nov; 101():177-86. PubMed ID: 23158309 [TBL] [Abstract][Full Text] [Related]
16. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry. Liu H; Wang H; Li C; Wang L; Pan Z; Wang L J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761 [TBL] [Abstract][Full Text] [Related]
17. Fecal volatile organic compounds for early detection of colorectal cancer: where are we now? Bosch S; Berkhout DJ; Ben Larbi I; de Meij TG; de Boer NK J Cancer Res Clin Oncol; 2019 Jan; 145(1):223-234. PubMed ID: 30554400 [TBL] [Abstract][Full Text] [Related]
18. [Quantitative determination of seven major absorbed volatile constituents in mice brain, liver and blood after intragastric administration of Asari Radix et Rhizoma suspension by headspace-solid phase microextraction-gas chromatography-mass spectrometry]. Zhang ZW; Liu GX; Xie DM; Tian F; Jia YK; Xu F; Shang MY; Wang X; Cai SQ Zhongguo Zhong Yao Za Zhi; 2016 Jan; 41(2):285-293. PubMed ID: 28861975 [TBL] [Abstract][Full Text] [Related]
19. Analysis of volatiles from stored wheat and Rhyzopertha dominica (F.) with solid phase microextraction-gas chromatography mass spectrometry. Niu Y; Hua L; Hardy G; Agarwal M; Ren Y J Sci Food Agric; 2016 Mar; 96(5):1697-703. PubMed ID: 26018460 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]