These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Kaur S; Cogan NO; Stephens A; Noy D; Butsch M; Forster JW; Materne M Theor Appl Genet; 2014 Mar; 127(3):703-13. PubMed ID: 24370962 [TBL] [Abstract][Full Text] [Related]
4. Fine mapping and gene cloning in the post-NGS era: advances and prospects. Jaganathan D; Bohra A; Thudi M; Varshney RK Theor Appl Genet; 2020 May; 133(5):1791-1810. PubMed ID: 32040676 [TBL] [Abstract][Full Text] [Related]
5. Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. Polanco C; Sáenz de Miera LE; González AI; García P; Fratini R; Vaquero F; Vences FJ; Pérez de la Vega M PLoS One; 2019; 14(3):e0214409. PubMed ID: 30917174 [TBL] [Abstract][Full Text] [Related]
6. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Varshney RK Plant Sci; 2016 Jan; 242():98-107. PubMed ID: 26566828 [TBL] [Abstract][Full Text] [Related]
7. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916 [TBL] [Abstract][Full Text] [Related]
8. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696 [TBL] [Abstract][Full Text] [Related]
10. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974 [TBL] [Abstract][Full Text] [Related]
11. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824 [TBL] [Abstract][Full Text] [Related]
12. Updates on Genomic Resources in Chickpea for Crop Improvement. Ghangal R; Singh VK; Khemka NK; Rajkumar MS; Garg R; Jain M Methods Mol Biol; 2020; 2107():19-33. PubMed ID: 31893441 [TBL] [Abstract][Full Text] [Related]
13. Advancements in molecular marker technologies and their applications in diversity studies. Ramesh P; Mallikarjuna G; Sameena S; Kumar A; Gurulakshmi K; Reddy BV; Reddy PCO; Sekhar AC J Biosci; 2020; 45():. PubMed ID: 33097680 [TBL] [Abstract][Full Text] [Related]
14. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Guerra-García A; Gioia T; von Wettberg E; Logozzo G; Papa R; Bitocchi E; Bett KE Curr Protoc; 2021 May; 1(5):e134. PubMed ID: 34004055 [TBL] [Abstract][Full Text] [Related]
15. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum). Takeshima R; Ogiso-Tanaka E; Yasui Y; Matsui K BMC Plant Biol; 2021 Jan; 21(1):18. PubMed ID: 33407135 [TBL] [Abstract][Full Text] [Related]
16. Translational genomics for plant breeding with the genome sequence explosion. Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219 [TBL] [Abstract][Full Text] [Related]
17. Current advances in chickpea genomics: applications and future perspectives. Jha UC Plant Cell Rep; 2018 Jul; 37(7):947-965. PubMed ID: 29860584 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. Kaur S; Cogan NO; Pembleton LW; Shinozuka M; Savin KW; Materne M; Forster JW BMC Genomics; 2011 May; 12():265. PubMed ID: 21609489 [TBL] [Abstract][Full Text] [Related]
19. Skim sequencing: an advanced NGS technology for crop improvement. Kumar P; Choudhary M; Jat BS; Kumar B; Singh V; Kumar V; Singla D; Rakshit S J Genet; 2021; 100():. PubMed ID: 34238778 [TBL] [Abstract][Full Text] [Related]
20. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Bohra A; Pandey MK; Jha UC; Singh B; Singh IP; Datta D; Chaturvedi SK; Nadarajan N; Varshney RK Theor Appl Genet; 2014 Jun; 127(6):1263-91. PubMed ID: 24710822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]