BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33038278)

  • 1. Do myeloproliferative neoplasms and multiple myeloma share the same genetic susceptibility loci?
    Macauda A; Giaccherini M; Sainz J; Gemignani F; Sgherza N; Sánchez-Maldonado JM; Gora-Tybor J; Martinez-Lopez J; Carreño-Tarragona G; Jerez A; Spadano R; Gołos A; Jurado M; Hernández-Mohedo F; Mazur G; Tavano F; Butrym A; Várkonyi J; Canzian F; Campa D
    Int J Cancer; 2021 Apr; 148(7):1616-1624. PubMed ID: 33038278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Cytogenetic Abnormalities in Myeloproliferative Neoplasms and Chronic Myeloid Leukemia.
    Swansbury J
    Methods Mol Biol; 2017; 1541():247-256. PubMed ID: 27910028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic polymorphisms associated with telomere length and risk of developing myeloproliferative neoplasms.
    Giaccherini M; Macauda A; Sgherza N; Sainz J; Gemignani F; Maldonado JMS; Jurado M; Tavano F; Mazur G; Jerez A; Góra-Tybor J; Gołos A; Mohedo FH; Lopez JM; Várkonyi J; Spadano R; Butrym A; Canzian F; Campa D
    Blood Cancer J; 2020 Sep; 10(8):89. PubMed ID: 32873778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of CYP2D6*4 and GSTP1 Ile105Val polymorphisms on the susceptibility to develop BCR-ABL1 negative myeloproliferative neoplasms.
    Daglar-Aday A; Akadam-Teker B; Yonal-Hindilerden I; Dermenci H; Sahin E; Hindilerden F; Yilmaz-Aydogan H; Ozturk O; Yavuz AS
    Mol Biol Rep; 2020 Oct; 47(10):7413-7420. PubMed ID: 32918123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms.
    Rumi E; Cazzola M
    Br J Haematol; 2017 Sep; 178(5):689-698. PubMed ID: 28444727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Hong T; Luo M; Liu Q
    Genet Test Mol Biomarkers; 2020 Apr; 24(4):181-187. PubMed ID: 32202925
    [No Abstract]   [Full Text] [Related]  

  • 7. Inheritance of the chronic myeloproliferative neoplasms. A systematic review.
    Ranjan A; Penninga E; Jelsig AM; Hasselbalch HC; Bjerrum OW
    Clin Genet; 2013 Feb; 83(2):99-107. PubMed ID: 23094849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells.
    Bao EL; Nandakumar SK; Liao X; Bick AG; Karjalainen J; Tabaka M; Gan OI; Havulinna AS; Kiiskinen TTJ; Lareau CA; de Lapuente Portilla AL; Li B; Emdin C; Codd V; Nelson CP; Walker CJ; Churchhouse C; de la Chapelle A; Klein DE; Nilsson B; Wilson PWF; Cho K; Pyarajan S; Gaziano JM; Samani NJ; ; ; Regev A; Palotie A; Neale BM; Dick JE; Natarajan P; O'Donnell CJ; Daly MJ; Milyavsky M; Kathiresan S; Sankaran VG
    Nature; 2020 Oct; 586(7831):769-775. PubMed ID: 33057200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent germline variant in ATM associated with familial myeloproliferative neoplasms.
    Braunstein EM; Imada E; Pasca S; Wang S; Chen H; Alba C; Hupalo DN; Wilkerson M; Dalgard CL; Ghannam J; Liu Y; Marchionni L; Moliterno A; Hourigan CS; Gondek LP
    Leukemia; 2023 Mar; 37(3):627-635. PubMed ID: 36543879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of chronic myelogenous leukemia from a background of myeloproliferative disorder: JAK2V617F as a potential risk factor for BCR-ABL translocation.
    Pingali SR; Mathiason MA; Lovrich SD; Go RS
    Clin Lymphoma Myeloma; 2009 Oct; 9(5):E25-9. PubMed ID: 19858050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms.
    Chen Y; Fang F; Hu Y; Liu Q; Bu D; Tan M; Wu L; Zhu P
    PLoS One; 2016; 11(4):e0154183. PubMed ID: 27111338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polygenic risk score for multiple myeloma risk prediction.
    Canzian F; Piredda C; Macauda A; Zawirska D; Andersen NF; Nagler A; Zaucha JM; Mazur G; Dumontet C; Wątek M; Jamroziak K; Sainz J; Várkonyi J; Butrym A; Beider K; Abildgaard N; Lesueur F; Dudziński M; Vangsted AJ; Pelosini M; Subocz E; Petrini M; Buda G; Raźny M; Gemignani F; Marques H; Orciuolo E; Kadar K; Jurczyszyn A; Druzd-Sitek A; Vogel U; Andersen V; Reis RM; Suska A; Avet-Loiseau H; Kruszewski M; Tomczak W; Rymko M; Minvielle S; Campa D
    Eur J Hum Genet; 2022 Apr; 30(4):474-479. PubMed ID: 34845334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Caspase Genes Polymorphisms in Genetic Susceptibility to Philadelphia-Negative Myeloproliferative Neoplasms in a Portuguese Population.
    Azevedo AP; Silva SN; Reichert A; Lima F; Júnior E; Rueff J
    Pathol Oncol Res; 2019 Jul; 25(3):961-969. PubMed ID: 29542026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms.
    Yung Y; Lee E; Chu HT; Yip PK; Gill H
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder.
    Hao SX; Ren R
    Mol Cell Biol; 2000 Feb; 20(4):1149-61. PubMed ID: 10648600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic aberrations of myeloproliferative and myelodysplastic/myeloproliferative neoplasms in chronic phase and during disease progression.
    Hahm C; Huh HJ; Mun YC; Seong CM; Chung WS; Huh J
    Int J Lab Hematol; 2015 Apr; 37(2):181-9. PubMed ID: 24845343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bcr-Abl with an SH3 deletion retains the ability To induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy.
    Gross AW; Zhang X; Ren R
    Mol Cell Biol; 1999 Oct; 19(10):6918-28. PubMed ID: 10490629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis.
    Kandarpa M; Wu YM; Robinson D; Burke PW; Chinnaiyan AM; Talpaz M
    Am J Hematol; 2017 Jun; 92(6):555-561. PubMed ID: 28335073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/BCR-FGFR1: a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase.
    Montenegro-Garreaud X; Miranda RN; Reynolds A; Tang G; Wang SA; Yabe M; Wang W; Fang L; Bueso-Ramos CE; Lin P; Medeiros LJ; Lu X
    Hum Pathol; 2017 Jul; 65():147-156. PubMed ID: 28551329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia.
    Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S
    Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.