BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33038389)

  • 1. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity.
    Lyra-Leite DM; Petersen AP; Ariyasinghe NR; Cho N; McCain ML
    J Mol Cell Cardiol; 2021 Jan; 150():32-43. PubMed ID: 33038389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix-guided control of mitochondrial function in cardiac myocytes.
    Lyra-Leite DM; Andres AM; Cho N; Petersen AP; Ariyasinghe NR; Kim SS; Gottlieb RA; McCain ML
    Acta Biomater; 2019 Oct; 97():281-295. PubMed ID: 31401347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.
    Lyra-Leite DM; Andres AM; Petersen AP; Ariyasinghe NR; Cho N; Lee JA; Gottlieb RA; McCain ML
    Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H757-H767. PubMed ID: 28733449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of myocyte remodeling in vitro with engineered substrates.
    Geisse NA; Sheehy SP; Parker KK
    In Vitro Cell Dev Biol Anim; 2009; 45(7):343-50. PubMed ID: 19252956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcomere alignment is regulated by myocyte shape.
    Bray MA; Sheehy SP; Parker KK
    Cell Motil Cytoskeleton; 2008 Aug; 65(8):641-51. PubMed ID: 18561184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility.
    McCain ML; Yuan H; Pasqualini FS; Campbell PH; Parker KK
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1525-39. PubMed ID: 24682394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes.
    Hom J; Yu T; Yoon Y; Porter G; Sheu SS
    Biochim Biophys Acta; 2010; 1797(6-7):913-21. PubMed ID: 20347716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive relationship between basement-membrane development and sarcomerogenesis in single cardiomyocytes.
    Yang H; Borg TK; Liu H; Gao BZ
    Exp Cell Res; 2015 Jan; 330(1):222-32. PubMed ID: 25151177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors.
    Chopra A; Lin V; McCollough A; Atzet S; Prestwich GD; Wechsler AS; Murray ME; Oake SA; Kresh JY; Janmey PA
    J Biomech; 2012 Mar; 45(5):824-31. PubMed ID: 22196970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.
    Bray MA; Adams WJ; Geisse NA; Feinberg AW; Sheehy SP; Parker KK
    Biomaterials; 2010 Jul; 31(19):5143-50. PubMed ID: 20382423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Shape-Controlled Microtissues on Compliant Hydrogels with Tunable Rigidity and Extracellular Matrix Ligands.
    Rexius-Hall ML; Ariyasinghe NR; McCain ML
    Methods Mol Biol; 2021; 2258():57-72. PubMed ID: 33340354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes.
    Regula KM; Baetz D; Kirshenbaum LA
    Circulation; 2004 Dec; 110(25):3795-802. PubMed ID: 15596562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing.
    Chopra A; Tabdanov E; Patel H; Janmey PA; Kresh JY
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1252-66. PubMed ID: 21257918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical architecture influences calcium dynamics in engineered cardiac muscle.
    Pong T; Adams WJ; Bray MA; Feinberg AW; Sheehy SP; Werdich AA; Parker KK
    Exp Biol Med (Maywood); 2011 Mar; 236(3):366-73. PubMed ID: 21330361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro.
    Williams C; Quinn KP; Georgakoudi I; Black LD
    Acta Biomater; 2014 Jan; 10(1):194-204. PubMed ID: 24012606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes.
    Lu X; Thai PN; Lu S; Pu J; Bers DM
    J Mol Cell Cardiol; 2019 Nov; 136():72-84. PubMed ID: 31491377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes.
    Ruiz-Meana M; Abellán A; Miró-Casas E; Garcia-Dorado D
    Basic Res Cardiol; 2007 Nov; 102(6):542-52. PubMed ID: 17891523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes.
    Liu B; Li A; Qin Y; Tian X; Gao M; Jiang W; Gong G
    J Mol Cell Cardiol; 2019 Nov; 136():64-71. PubMed ID: 31521710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.