These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33038417)

  • 1. EEG Integrated Platform Lossless (EEG-IP-L) pre-processing pipeline for objective signal quality assessment incorporating data annotation and blind source separation.
    Desjardins JA; van Noordt S; Huberty S; Segalowitz SJ; Elsabbagh M
    J Neurosci Methods; 2021 Jan; 347():108961. PubMed ID: 33038417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings.
    Lopez KL; Monachino AD; Morales S; Leach SC; Bowers ME; Gabard-Durnam LJ
    Neuroimage; 2022 Oct; 260():119390. PubMed ID: 35817295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent evaluation of the harvard automated processing pipeline for Electroencephalography 1.0 using multi-site EEG data from children with Fragile X Syndrome.
    Auger E; Berry-Kravis EM; Ethridge LE
    J Neurosci Methods; 2022 Apr; 371():109501. PubMed ID: 35182604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automagic: Standardized preprocessing of big EEG data.
    Pedroni A; Bahreini A; Langer N
    Neuroimage; 2019 Oct; 200():460-473. PubMed ID: 31233907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-IP: an international infant EEG data integration platform for the study of risk and resilience in autism and related conditions.
    van Noordt S; Desjardins JA; Huberty S; Abou-Abbas L; Webb SJ; Levin AR; Segalowitz SJ; Evans AC; Elsabbagh M
    Mol Med; 2020 May; 26(1):40. PubMed ID: 32380941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative signal quality assessment for large-scale continuous scalp electroencephalography from a big data perspective.
    Zhao L; Zhang Y; Yu X; Wu H; Wang L; Li F; Duan M; Lai Y; Liu T; Dong L; Yao D
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 35952665
    [No Abstract]   [Full Text] [Related]  

  • 7. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data.
    Gabard-Durnam LJ; Mendez Leal AS; Wilkinson CL; Levin AR
    Front Neurosci; 2018; 12():97. PubMed ID: 29535597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Pipeline for Infants Continuous EEG (APICE): A flexible pipeline for developmental cognitive studies.
    Fló A; Gennari G; Benjamin L; Dehaene-Lambertz G
    Dev Cogn Neurosci; 2022 Apr; 54():101077. PubMed ID: 35093730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.
    Atluri S; Frehlich M; Mei Y; Garcia Dominguez L; Rogasch NC; Wong W; Daskalakis ZJ; Farzan F
    Front Neural Circuits; 2016; 10():78. PubMed ID: 27774054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroencephalography-Based Source Localization for Depression Using Standardized Low Resolution Brain Electromagnetic Tomography - Variational Mode Decomposition Technique.
    Kaur C; Singh P; Sahni S
    Eur Neurol; 2019; 81(1-2):63-75. PubMed ID: 31112946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal.
    Oosugi N; Kitajo K; Hasegawa N; Nagasaka Y; Okanoya K; Fujii N
    Neural Netw; 2017 Sep; 93():1-6. PubMed ID: 28505599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics.
    da Cruz JR; Chicherov V; Herzog MH; Figueiredo P
    Clin Neurophysiol; 2018 Jul; 129(7):1427-1437. PubMed ID: 29730542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BEAPP: The Batch Electroencephalography Automated Processing Platform.
    Levin AR; Méndez Leal AS; Gabard-Durnam LJ; O'Leary HM
    Front Neurosci; 2018; 12():513. PubMed ID: 30131667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and visualization of single-trial event-related potentials.
    Jung TP; Makeig S; Westerfield M; Townsend J; Courchesne E; Sejnowski TJ
    Hum Brain Mapp; 2001 Nov; 14(3):166-85. PubMed ID: 11559961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Maryland analysis of developmental EEG (MADE) pipeline.
    Debnath R; Buzzell GA; Morales S; Bowers ME; Leach SC; Fox NA
    Psychophysiology; 2020 Jun; 57(6):e13580. PubMed ID: 32293719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.
    Stropahl M; Bauer AR; Debener S; Bleichner MG
    Front Neurosci; 2018; 12():309. PubMed ID: 29867321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing muscle artifacts from EEG data of people with cognitive impairment using high order statistic methods.
    Kalogiannis G; Chassapis G; Tsolaki M
    Hell J Nucl Med; 2019; 22 Suppl():165-173. PubMed ID: 30877734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG is better left alone.
    Delorme A
    Sci Rep; 2023 Feb; 13(1):2372. PubMed ID: 36759667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.
    Sai CY; Mokhtar N; Arof H; Cumming P; Iwahashi M
    IEEE J Biomed Health Inform; 2018 May; 22(3):664-670. PubMed ID: 28692997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection.
    Nolan H; Whelan R; Reilly RB
    J Neurosci Methods; 2010 Sep; 192(1):152-62. PubMed ID: 20654646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.