These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33038422)

  • 81. Molecular Cloning and Functional Identification of a Pericarp- and Testa-Abundant Gene's (
    Sharif Y; Zhuang Y; Xie W; Zhang C; Chen K; Deng Y; Chen Y; Fu H; Wang L; Chen X; Zhuang W; Chen H
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39062915
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Integrated metabolomic and transcriptomic analyses of two peanut (Arachis hypogaea L.) cultivars differing in amino acid metabolism of the seeds.
    Li C; Lai X; Luo K; Zheng Y; Liu K; Wan X
    Plant Physiol Biochem; 2022 Aug; 185():132-143. PubMed ID: 35688083
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages.
    Zhao C; Zhao S; Hou L; Xia H; Wang J; Li C; Li A; Li T; Zhang X; Wang X
    BMC Plant Biol; 2015 Aug; 15():188. PubMed ID: 26239120
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development.
    Zhang Y; Wang P; Xia H; Zhao C; Hou L; Li C; Gao C; Wang X; Zhao S
    BMC Genomics; 2016 Aug; 17(1):606. PubMed ID: 27514934
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Chemical composition of some wild peanut species (Arachis L.) seeds.
    Grosso NR; Nepote V; Guzmán CA
    J Agric Food Chem; 2000 Mar; 48(3):806-9. PubMed ID: 10725154
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study.
    Zhu Q; King GJ; Liu X; Shan N; Borpatragohain P; Baten A; Wang P; Luo S; Zhou Q
    PLoS One; 2019; 14(8):e0221578. PubMed ID: 31442274
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.).
    Yu B; Huai D; Huang L; Kang Y; Ren X; Chen Y; Zhou X; Luo H; Liu N; Chen W; Lei Y; Pandey MK; Sudini H; Varshney RK; Liao B; Jiang H
    BMC Genet; 2019 Mar; 20(1):32. PubMed ID: 30866805
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.
    Das S; Upadhyaya HD; Bajaj D; Kujur A; Badoni S; Laxmi ; Kumar V; Tripathi S; Gowda CL; Sharma S; Singh S; Tyagi AK; Parida SK
    DNA Res; 2015 Jun; 22(3):193-203. PubMed ID: 25922536
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.).
    Su L; Zhao CZ; Bi YP; Wan SB; Xia H; Wang XJ
    J Biosci; 2011 Jun; 36(2):223-8. PubMed ID: 21654076
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map.
    Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genome-Wide Association and RNA-Seq Analyses Reveal a Potential Candidate Gene Related to Oil Content in Soybean Seeds.
    Jia H; Han D; Yan X; Zhang L; Liang J; Lu W
    Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125702
    [TBL] [Abstract][Full Text] [Related]  

  • 93. EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.).
    Bi YP; Liu W; Xia H; Su L; Zhao CZ; Wan SB; Wang XJ
    Genome; 2010 Oct; 53(10):832-9. PubMed ID: 20962890
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Genome-wide association study of soybean seed germination under drought stress.
    Liu Z; Li H; Gou Z; Zhang Y; Wang X; Ren H; Wen Z; Kang BK; Li Y; Yu L; Gao H; Wang D; Qi X; Qiu L
    Mol Genet Genomics; 2020 May; 295(3):661-673. PubMed ID: 32008123
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus.
    Wang B; Wu Z; Li Z; Zhang Q; Hu J; Xiao Y; Cai D; Wu J; King GJ; Li H; Liu K
    Plant Biotechnol J; 2018 Jul; 16(7):1336-1348. PubMed ID: 29265559
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Identification of QTLs associated with very-long chain fatty acid (VLCFA) content via linkage mapping and BSA-seq in peanut.
    Xue X; Li J; Wu J; Hu M; Liu N; Yan L; Chen Y; Wang X; Kang Y; Wang Z; Jiang H; Lei Y; Zhang C; Liao B; Huai D
    Theor Appl Genet; 2024 Jan; 137(2):33. PubMed ID: 38285195
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality.
    Wang N; Ma J; Pei W; Wu M; Li H; Li X; Yu S; Zhang J; Yu J
    BMC Genomics; 2017 Mar; 18(1):218. PubMed ID: 28249560
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Coordinated Lipid Mobilization during Seed Development and Germination in Peanut (
    Cao D; Ma Y; Cao Z; Hu S; Li Z; Li Y; Wang K; Wang X; Wang J; Zhao K; Zhao K; Qiu D; Li Z; Ren R; Ma X; Zhang X; Gong F; Jung MY; Yin D
    J Agric Food Chem; 2024 Feb; 72(6):3218-3230. PubMed ID: 38157443
    [TBL] [Abstract][Full Text] [Related]  

  • 99. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid.
    Wen S; Liu H; Li X; Chen X; Hong Y; Li H; Lu Q; Liang X
    Plant Mol Biol; 2018 May; 97(1-2):177-185. PubMed ID: 29700675
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.).
    Chen H; Yang Q; Chen K; Zhao S; Zhang C; Pan R; Cai T; Deng Y; Wang X; Chen Y; Chu W; Xie W; Zhuang W
    BMC Genomics; 2019 May; 20(1):392. PubMed ID: 31113378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.