BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33038605)

  • 21. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding.
    Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR
    Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds.
    Stern A; Guidotti M; Shaubi E; Popov M; Linder C; Heldman E; Grinberg S
    Int J Nanomedicine; 2014; 9():561-74. PubMed ID: 24531296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches.
    Mansouri A; Mahnam K
    J Mol Graph Model; 2017 Jun; 74():61-72. PubMed ID: 28359959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ordered Packing of β-Sheet Nanofibrils into Nanotubes: Multi-hierarchical Assembly of Designed Short Peptides.
    Ma X; Zhao Y; He C; Zhou X; Qi H; Wang Y; Chen C; Wang D; Li J; Ke Y; Wang J; Xu H
    Nano Lett; 2021 Dec; 21(24):10199-10207. PubMed ID: 34870987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent-controlled reversible switching between adsorbed self-assembled nanoribbons and nanotubes.
    Jamal A; Nyrkova I; Mesini P; Militzer S; Reiter G
    Nanoscale; 2017 Mar; 9(9):3293-3303. PubMed ID: 28225113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotube and three-way nanotube formation with nonionic amphiphilic block peptides.
    Kanzaki T; Horikawa Y; Makino A; Sugiyama J; Kimura S
    Macromol Biosci; 2008 Nov; 8(11):1026-33. PubMed ID: 18604818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective.
    Zhou P; Wang J; Wang M; Hou J; Lu JR; Xu H
    J Colloid Interface Sci; 2019 Jul; 548():244-254. PubMed ID: 31004957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile.
    da Silva ER; Alves WA; Castelletto V; Reza M; Ruokolainen J; Hussain R; Hamley IW
    Chem Commun (Camb); 2015 Jul; 51(58):11634-7. PubMed ID: 26094619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four-peptide-nanotube bundle formation by self-assembling of cyclic tetra-β-peptide using G-quartet motif.
    Ishihara Y; Kimura S
    Biopolymers; 2013 Apr; 100(2):141-7. PubMed ID: 23616097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled nanotubes and helical tapes from diacetylene nonionic amphiphiles. Structural studies before and after polymerization.
    Perino A; Schmutz M; Meunier S; Mésini PJ; Wagner A
    Langmuir; 2011 Oct; 27(19):12149-55. PubMed ID: 21902211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides.
    Bowerman CJ; Ryan DM; Nissan DA; Nilsson BL
    Mol Biosyst; 2009 Sep; 5(9):1058-69. PubMed ID: 19668872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence length determinants for self-assembly of amphipathic β-sheet peptides.
    Lee NR; Bowerman CJ; Nilsson BL
    Biopolymers; 2013 Nov; 100(6):738-50. PubMed ID: 23553562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular origin of the self-assembled morphological difference caused by varying the order of charged residues in short peptides.
    Deng L; Zhou P; Zhao Y; Wang Y; Xu H
    J Phys Chem B; 2014 Oct; 118(43):12501-10. PubMed ID: 25296386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide.
    Mason ML; Lalisse RF; Finnegan TJ; Hadad CM; Modarelli DA; Parquette JR
    Langmuir; 2019 Sep; 35(38):12460-12468. PubMed ID: 31469284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.
    Tobias F; Keiderling TA
    Langmuir; 2016 May; 32(18):4653-61. PubMed ID: 27099990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.
    Subbalakshmi C; Manorama SV; Nagaraj R
    J Pept Sci; 2012 May; 18(5):283-92. PubMed ID: 22431418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of water molecules on the electronic and structural properties of peptide nanotubes.
    Andrade-Filho T; Ferreira FF; Alves WA; Rocha AR
    Phys Chem Chem Phys; 2013 May; 15(20):7555-9. PubMed ID: 23588391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.