BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33038715)

  • 1. Reductive degradation of chlorinated organophosphate esters by nanoscale zerovalent iron/cetyltrimethylammonium bromide composites: Reactivity, mechanism and new pathways.
    Li D; Zhong Y; Zhu X; Wang H; Yang W; Deng Y; Huang W; Peng P
    Water Res; 2021 Jan; 188():116447. PubMed ID: 33038715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide.
    Li D; Zhong Y; Zhu X; Wang H; Yang W; Deng Y; Huang W; Peng P
    Environ Pollut; 2020 Jul; 262():114282. PubMed ID: 32155549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences among the responses to three chlorinated organophosphate esters in earthworm: Evidences from biomarkers, transcriptomics and metabolomics.
    Gao Y; Wang L; Zhang X; Shi C; Ma L; Zhang X; Wang G
    Sci Total Environ; 2022 Apr; 815():152853. PubMed ID: 34998776
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zhu X; Deng S; Fang Y; Yang S; Zhong Y; Li D; Wang H; Wu J; Peng P
    Environ Sci Technol; 2022 Feb; 56(3):1951-1962. PubMed ID: 35015551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model.
    Niu Z; Zhang Z; Li J; He J; Zhang Y
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10854-10866. PubMed ID: 30778928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organophosphate Diesters (Di-OPEs) Play a Critical Role in Understanding Global Organophosphate Esters (OPEs) in Fishmeal.
    Li X; Zhao N; Fu J; Liu Y; Zhang W; Dong S; Wang P; Su X; Fu J
    Environ Sci Technol; 2020 Oct; 54(19):12130-12141. PubMed ID: 32936633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China.
    Zhong M; Wu H; Mi W; Li F; Ji C; Ebinghaus R; Tang J; Xie Z
    Sci Total Environ; 2018 Feb; 615():1305-1311. PubMed ID: 29751435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New dechlorination products and mechanisms of tris(2-chloroethyl) phosphate by an anaerobic enrichment culture from a vehicle dismantling site.
    Yang S; Wu J; Wang H; Yang Q; Zhang H; Yang L; Li D; Deng Y; Zhong Y; Peng P
    Environ Pollut; 2023 Dec; 338():122704. PubMed ID: 37806429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced removal of organophosphate esters by iron-modified biochar with developed mesoporous: Performance and mechanism based on site energy distribution theory.
    Liu Y; Song Y; Li H; Ma Z; Yang Z
    Chemosphere; 2023 Jul; 330():138722. PubMed ID: 37084903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated occupational exposure to chlorinated phosphate esters at a construction materials manufacturing plant.
    Shi F; Liang K; Liu R; Dong Q; He Z; Xu J; Liu J
    Environ Int; 2020 Jun; 139():105653. PubMed ID: 32361061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Children's residential exposure to organophosphate ester flame retardants and plasticizers: Investigating exposure pathways in the TESIE study.
    Phillips AL; Hammel SC; Hoffman K; Lorenzo AM; Chen A; Webster TF; Stapleton HM
    Environ Int; 2018 Jul; 116():176-185. PubMed ID: 29689464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid electrochemical reduction of a typical chlorinated organophosphorus flame retardant on copper foam: degradation kinetics and mechanisms.
    Yang L; Huang C; Yin Z; Meng J; Guo M; Feng L; Liu Y; Zhang L; Du Z
    Chemosphere; 2021 Feb; 264(Pt 2):128515. PubMed ID: 33070061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring source footprint of Organophosphate esters in the Bohai Sea, China: Insight from temporal and spatial variabilities in the atmosphere from June 2014 to May 2019.
    Sun R; Wang X; Tian C; Zong Z; Ma W; Zhao S; Wang Y; Tang J; Cui S; Li J; Zhang G
    Environ Int; 2022 Jan; 159():107044. PubMed ID: 34915353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L.): Uptake mechanism, in vivo hydrolysis and subcellular distribution.
    Gong X; Wang Y; Pu J; Zhang J; Sun H; Wang L
    Environ Int; 2020 Feb; 135():105405. PubMed ID: 31864022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coupling between biological pump export and air-water exchange of organophosphate esters in a subtropical water environment.
    He T; Qing X; Chen X; Wang W; Junaid M; Gao B; Huang Y; Wang J
    Sci Total Environ; 2022 Dec; 853():158623. PubMed ID: 36089023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and human exposure assessment of organophosphate esters in atmospheric PM
    Zhang W; Wang P; Zhu Y; Wang D; Yang R; Li Y; Matsiko J; Zuo P; Qin L; Yang X; Zhang Q; Jiang G
    Ecotoxicol Environ Saf; 2020 Dec; 206():111399. PubMed ID: 33022444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dermal uptake and percutaneous penetration of organophosphate esters in a human skin ex vivo model.
    Frederiksen M; Stapleton HM; Vorkamp K; Webster TF; Jensen NM; Sørensen JA; Nielsen F; Knudsen LE; Sørensen LS; Clausen PA; Nielsen JB
    Chemosphere; 2018 Apr; 197():185-192. PubMed ID: 29353672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pollution Characteristics of Organophosphate Esters in Frozen Soil on the Eastern Edge of Qinghai-Tibet Plateau].
    Liu LY; Yin HL; Jian LJ; Xu ZW; Xiong YM; Luo Y; Liu XW; Xu WX
    Huan Jing Ke Xue; 2021 Jul; 42(7):3549-3554. PubMed ID: 34212681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorinated organophosphate esters in Irish waste foams and fabrics: Concentrations, preliminary assessment of temporal trends and evaluation of the impact of a concentration limit value.
    Harrad S; Sharkey M; Stubbings WA; Alghamdi M; Berresheim H; Coggins M; Rosa AH; Drage D
    Sci Total Environ; 2023 Feb; 859(Pt 1):160250. PubMed ID: 36400302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of organophosphate esters by ligand functionalized MIL-101 (Fe): Modulated adsorption and DFT calculations.
    Fan S; Lu X; Li H; Du X; Huang X; Ma Y; Wang J; Tao X; Dang Z; Lu G
    Chemosphere; 2022 Sep; 302():134881. PubMed ID: 35561783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.