These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33039682)

  • 1. Spatial pattern and surface-specificity of particle and microorganism deposition and attachment: Modeling, analytic solution and experimental test.
    Leontev A; Bar-On R; Bass M; Jurić M; Schmetz C; Freger V
    J Colloid Interface Sci; 2021 Feb; 584():45-56. PubMed ID: 33039682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber.
    Li J; Busscher HJ; Norde W; Sjollema J
    Colloids Surf B Biointerfaces; 2011 May; 84(1):76-81. PubMed ID: 21216569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and analysis of hydrodynamic and physico-chemical effects in bacterial deposition on surfaces.
    Margalit E; Leshansky A; Freger V
    Biofouling; 2013 Sep; 29(8):977-89. PubMed ID: 23947947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal and bacterial deposition: role of gravity.
    Chen G; Hong Y; Walker SL
    Langmuir; 2010 Jan; 26(1):314-9. PubMed ID: 19911823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions.
    Bakker DP; Busscher HJ; van der Mei HC
    Microbiology (Reading); 2002 Feb; 148(Pt 2):597-603. PubMed ID: 11832522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
    Sadeghi G; Schijven JF; Behrends T; Hassanizadeh SM; van Genuchten MT
    J Contam Hydrol; 2013 Sep; 152():12-7. PubMed ID: 23832102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of colloidal particle deposition in microfluidic systems under temperature gradients: experiment and modelling.
    Yan Z; Huang X; Shui L; Yang C
    Soft Matter; 2020 Apr; 16(15):3649-3656. PubMed ID: 32202268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A perturbation solution of pulsatile Casson flow in the parallel-plate flow chamber].
    Qan K; Guo B; Liu B; Liu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):402-7. PubMed ID: 12557508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition of latex colloids at rough mineral surfaces: an analogue study using nanopatterned surfaces.
    Krishna Darbha G; Fischer C; Michler A; Luetzenkirchen J; Schäfer T; Heberling F; Schild D
    Langmuir; 2012 Apr; 28(16):6606-17. PubMed ID: 22448713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted particulate adhesion to cellulose surfaces mediated by bifunctional fusion proteins.
    Pangu G; Johnston E; Petkov J; Parry N; Leach M; Hammer DA
    Langmuir; 2007 Oct; 23(21):10682-93. PubMed ID: 17845062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling fecal bacteria transport and retention in agricultural and urban soils under saturated and unsaturated flow conditions.
    Balkhair KS
    Water Res; 2017 Mar; 110():313-320. PubMed ID: 28039813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces.
    Bakker DP; van der Plaats A; Verkerke GJ; Busscher HJ; van der Mei HC
    Appl Environ Microbiol; 2003 Oct; 69(10):6280-7. PubMed ID: 14532092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual enhancements of CFD modeling and experimental data: a case study of 1-mum particle deposition in a branching airway model.
    Longest PW; Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):761-71. PubMed ID: 16774865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling QCM-D Response to Deposition and Attachment of Microparticles and Living Cells.
    Tarnapolsky A; Freger V
    Anal Chem; 2018 Dec; 90(23):13960-13968. PubMed ID: 30295025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.