BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33039702)

  • 1. Trade-offs between effluent quality and ammonia volatilisation with CO
    Sutherland DL; Burke J; Ralph PJ
    J Environ Manage; 2021 Jan; 277():111398. PubMed ID: 33039702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying filamentous algae nutrient scrubbers for improved wastewater treatment and harvestability - comparison with microalgae.
    Sutherland DL; Burke J
    J Environ Manage; 2023 Dec; 348():119339. PubMed ID: 37883837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biological performance of a novel microalgal-bacterial membrane photobioreactor: Effects of HRT and N/P ratio.
    Zhang M; Leung KT; Lin H; Liao B
    Chemosphere; 2020 Dec; 261():128199. PubMed ID: 33113666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.
    Sutherland DL; Montemezzani V; Mehrabadi A; Craggs RJ
    Water Res; 2016 Feb; 89():301-8. PubMed ID: 26707731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE).
    Vadiveloo A; Foster L; Kwambai C; Bahri PA; Moheimani NR
    Sci Total Environ; 2021 Jun; 775():145853. PubMed ID: 33621869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production.
    Wu KC; Yau YH; Sze ET
    Mar Pollut Bull; 2020 Apr; 153():111007. PubMed ID: 32275554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with
    Zieliński M; Dębowski M; Szwaja S; Kisielewska M
    Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of microalgal biomass on supernatant from biosolid dewatering.
    Ficara E; Uslenghi A; Basilico D; Mezzanotte V
    Water Sci Technol; 2014; 69(4):896-902. PubMed ID: 24569293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources.
    Srivastava K; Mickan BS; O'Connor J; Gurung SK; Moheimani NR; Jenkins SN
    J Environ Manage; 2023 Oct; 344():118392. PubMed ID: 37384987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wastewater treatment by microalgal membrane bioreactor: Evaluating the effect of organic loading rate and hydraulic residence time.
    Ashadullah AKM; Shafiquzzaman M; Haider H; Alresheedi M; Azam MS; Ghumman AR
    J Environ Manage; 2021 Jan; 278(Pt 1):111548. PubMed ID: 33126200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings.
    Ge S; Champagne P
    Water Res; 2016 Jan; 88():604-612. PubMed ID: 26562797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.
    Camarillo MK; Stringfellow WT; Spier CL; Hanlon JS; Domen JK
    J Environ Manage; 2013 Oct; 128():233-42. PubMed ID: 23747374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the performance of an anoxic-aerobic microalgal-bacterial system treating digestate.
    Torres-Franco AF; Zuluaga M; Hernández-Roldán D; Leroy-Freitas D; Sepúlveda-Muñoz CA; Blanco S; Mota CR; Muñoz R
    Chemosphere; 2021 May; 270():129437. PubMed ID: 33429236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
    Ho L; Ho G
    Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique.
    Van Wagenen J; Pape ML; Angelidaki I
    Water Res; 2015 May; 75():301-11. PubMed ID: 25792276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.