These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 33039787)

  • 1. Self-grouping convolutional neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2020 Dec; 132():491-505. PubMed ID: 33039787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential convolutional neural network.
    Sarıgül M; Ozyildirim BM; Avci M
    Neural Netw; 2019 Aug; 116():279-287. PubMed ID: 31125914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HRel: Filter pruning based on High Relevance between activation maps and class labels.
    Sarvani CH; Ghorai M; Dubey SR; Basha SHS
    Neural Netw; 2022 Mar; 147():186-197. PubMed ID: 35042156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming.
    Suganuma M; Kobayashi M; Shirakawa S; Nagao T
    Evol Comput; 2020; 28(1):141-163. PubMed ID: 30900927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical Channel Pruning by Conditional Accuracy Change for Deep Neural Networks.
    Chen Z; Xu TB; Du C; Liu CL; He H
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):799-813. PubMed ID: 32275616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention.
    Tian G; Sun Y; Liu Y; Zeng X; Wang M; Liu Y; Zhang J; Chen J
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; PP():. PubMed ID: 34487502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Filter Pruning via Coarse-to-Fine Neural Architecture Search and Contrastive Knowledge Transfer.
    Lee S; Song BC
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9674-9685. PubMed ID: 37021856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint design and compression of convolutional neural networks as a Bi-level optimization problem.
    Louati H; Bechikh S; Louati A; Aldaej A; Said LB
    Neural Comput Appl; 2022; 34(17):15007-15029. PubMed ID: 35599971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
    He Y; Dong X; Kang G; Fu Y; Yan C; Yang Y
    IEEE Trans Cybern; 2020 Aug; 50(8):3594-3604. PubMed ID: 31478883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical Conventional Neural Network Channel Pruning by Genetic Wavelet Channel Search for Image Classification.
    Chen L; Gong S; Shi X; Shang M
    Front Comput Neurosci; 2021; 15():760554. PubMed ID: 34776916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving efficiency in convolutional neural networks with multilinear filters.
    Tran DT; Iosifidis A; Gabbouj M
    Neural Netw; 2018 Sep; 105():328-339. PubMed ID: 29920430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DualConv: Dual Convolutional Kernels for Lightweight Deep Neural Networks.
    Zhong J; Chen J; Mian A
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9528-9535. PubMed ID: 35230955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCA driven mixed filter pruning for efficient convNets.
    Ahmed W; Ansari S; Hanif M; Khalil A
    PLoS One; 2022; 17(1):e0262386. PubMed ID: 35073373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LdsConv: Learned Depthwise Separable Convolutions by Group Pruning.
    Lin W; Ding Y; Wei HL; Pan X; Zhang Y
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Neural Network Compression by In-Parallel Pruning-Quantization.
    Tung F; Mori G
    IEEE Trans Pattern Anal Mach Intell; 2020 Mar; 42(3):568-579. PubMed ID: 30561340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.