These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33039789)

  • 1. Human interaction behavior modeling using Generative Adversarial Networks.
    Nishimura Y; Nakamura Y; Ishiguro H
    Neural Netw; 2020 Dec; 132():521-531. PubMed ID: 33039789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Modality Selection for Cooperative Human-Robot Task Completion.
    Jacob MG; Wachs JP
    IEEE Trans Cybern; 2016 Dec; 46(12):3388-3400. PubMed ID: 26731783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control.
    Wang Z; Chai J; Xia S
    IEEE Trans Vis Comput Graph; 2021 Jan; 27(1):14-28. PubMed ID: 31502979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural language generation for social robotics: opportunities and challenges.
    Foster ME
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180027. PubMed ID: 30853003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using conditional generative adversarial networks to reduce the effects of latency in robotic telesurgery.
    Sachdeva N; Klopukh M; Clair RS; Hahn WE
    J Robot Surg; 2021 Aug; 15(4):635-641. PubMed ID: 33025374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks for Generation and Classification of Physical Rehabilitation Movement Episodes.
    Li L; Vakanski A
    Int J Mach Learn Comput; 2018 Oct; 8(5):428-436. PubMed ID: 30344962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FPGAN: Face de-identification method with generative adversarial networks for social robots.
    Lin J; Li Y; Yang G
    Neural Netw; 2021 Jan; 133():132-147. PubMed ID: 33217682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Make robot motions natural.
    LaViers A
    Nature; 2019 Jan; 565(7740):422-424. PubMed ID: 30664672
    [No Abstract]   [Full Text] [Related]  

  • 11. Using a social robot to teach gestural recognition and production in children with autism spectrum disorders.
    So WC; Wong MK; Lam CK; Lam WY; Chui AT; Lee TL; Ng HM; Chan CH; Fok DC
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):527-539. PubMed ID: 28673117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iconic Gestures for Robot Avatars, Recognition and Integration with Speech.
    Bremner P; Leonards U
    Front Psychol; 2016; 7():183. PubMed ID: 26925010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Human Mobility by Constructing a Skeletal Database and Augmenting it Using a Generative Adversarial Network (GAN) Simulator.
    Segal Y; Hadar O; Lhotska L
    Stud Health Technol Inform; 2022 Nov; 299():97-103. PubMed ID: 36325850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic recognition of surgical motions using statistical modeling for capturing variability.
    Reiley CE; Lin HC; Varadarajan B; Vagvolgyi B; Khudanpur S; Yuh DD; Hager GD
    Stud Health Technol Inform; 2008; 132():396-401. PubMed ID: 18391329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion Similarity Evaluation between Human and a Tri-Co Robot during Real-Time Imitation with a Trajectory Dynamic Time Warping Model.
    Gong L; Chen B; Xu W; Liu C; Li X; Zhao Z; Zhao L
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Framework for Controlling Work Sequence in Collaborative Human-Robot Assembly Processes.
    Garcia PP; Santos TG; Machado MA; Mendes N
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.