BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33039856)

  • 21. The Influence of Edible Oils' Composition on the Properties of Beeswax-Based Oleogels.
    Frolova Y; Sarkisyan V; Sobolev R; Makarenko M; Semin M; Kochetkova A
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and rheology of oleogels made from rice bran wax and rice bran oil.
    Wijarnprecha K; Aryusuk K; Santiwattana P; Sonwai S; Rousseau D
    Food Res Int; 2018 Oct; 112():199-208. PubMed ID: 30131129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of lutein ester-loaded oleogels developed by monostearin and sunflower oil.
    Jiang Z; Geng S; Liu C; Jiang J; Liu B
    J Food Biochem; 2019 Nov; 43(11):e12992. PubMed ID: 31373024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation.
    Tan CP; Man YC
    Phytochem Anal; 2002; 13(3):129-41. PubMed ID: 12099103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network.
    Wan Z; Sun Y; Ma L; Zhou F; Guo J; Hu S; Yang X
    Langmuir; 2018 Apr; 34(13):3971-3980. PubMed ID: 29546991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of storage on the physico-chemical properties of microparticles comprising a hydrogenated vegetable oil matrix and different essential oil concentrations.
    Gottschalk P; Brodesser B; Poncelet D; Jaeger H; Rennhofer H; Cole S
    J Microencapsul; 2019 Jan; 36(1):72-82. PubMed ID: 30916612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Vegetable Oil Type on the Rheological and Tribological Behavior of Montmorillonite-Based Oleogels.
    Martín-Alfonso MA; Rubio-Valle JF; Hinestroza JP; Martín-Alfonso JE
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation.
    Wang Y; Zhu M; Mei J; Luo S; Leng T; Chen Y; Nie S; Xie M
    J Food Sci; 2019 Jul; 84(7):1966-1978. PubMed ID: 31206695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system.
    Shrestha LK; Shrestha RG; Sharma SC; Aramaki K
    J Colloid Interface Sci; 2008 Dec; 328(1):172-9. PubMed ID: 18823901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound.
    Giacomozzi AS; Palla CA; Carrín ME; Martini S
    J Food Sci; 2019 Sep; 84(9):2549-2561. PubMed ID: 31433063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties.
    Callau M; Sow-Kébé K; Nicolas-Morgantini L; Fameau AL
    J Colloid Interface Sci; 2020 Feb; 560():874-884. PubMed ID: 31711663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel.
    Lei M; Zhang N; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C
    Food Chem; 2020 May; 312():126047. PubMed ID: 31884300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candelilla wax-based oleogels versus palm oil: evaluation of physical properties of innovative and conventional lipids using optical techniques.
    Szymańska I; Żbikowska A; Onacik-Gür S
    J Sci Food Agric; 2022 Apr; 102(6):2309-2320. PubMed ID: 34625957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization.
    Kim JY; Lim J; Lee J; Hwang HS; Lee S
    J Food Sci; 2017 Feb; 82(2):445-452. PubMed ID: 28140465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Impact of Oil Type on the Performance of β-Amyrin-Based Oleogels: Formation, Physicochemical Properties, and Potential Correlation Analysis.
    Su S; Qin S; Xia H; Li P; Li H; Li C; Guo S; Zeng C
    Foods; 2024 Mar; 13(6):. PubMed ID: 38540866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixed aqueous-and-oil foams in bulk.
    Si Y; Royer JR; Li T; Clegg PS
    J Colloid Interface Sci; 2023 Sep; 646():671-678. PubMed ID: 37224681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties.
    Heymans R; Tavernier I; Danthine S; Rimaux T; Van der Meeren P; Dewettinck K
    Food Funct; 2018 Jun; 9(6):3143-3154. PubMed ID: 29790526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growing a particle-stabilized aqueous foam.
    Tyowua AT; Binks BP
    J Colloid Interface Sci; 2020 Mar; 561():127-135. PubMed ID: 31812859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels.
    Andriotis EG; Monou PK; Komis G; Bouropoulos N; Ritzoulis C; Delis G; Kiosis E; Arsenos G; Fatouros DG
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.