These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33039920)

  • 1. On the magnetic aggregation of Fe
    Karvelas EG; Lampropoulos NK; Benos LT; Karakasidis T; Sarris IE
    Comput Methods Programs Biomed; 2021 Jan; 198():105778. PubMed ID: 33039920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.
    Karvelas EG; Lampropoulos NK; Sarris IE
    Comput Methods Programs Biomed; 2017 Apr; 142():21-30. PubMed ID: 28325444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
    Hewlin RL; Smith M; Kizito JP
    Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model.
    Hewlin RL; Tindall JM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow and diameter effect in the navigation process of magnetic nanocarriers inside the carotid artery.
    Karvelas EG; Lampropoulos NK; Karakasidis TE; Sarris IE
    Comput Methods Programs Biomed; 2022 Jun; 221():106916. PubMed ID: 35640395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.
    Hewlin RL; Ciero A; Kizito JP
    Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2005 Aug; 288(2):475-88. PubMed ID: 15927615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Approach to Accumulate Superparamagnetic Particles in Aqueous Environment Using Time-Varying Magnetic Field.
    Liu YL; Chen JJ; Ahmad F; Zhang TD; Guo WH; Ye YJ; Shang P; Yin DC
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1558-1564. PubMed ID: 31502959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.
    Babinec P; Krafcík A; Babincová M; Rosenecker J
    Med Biol Eng Comput; 2010 Aug; 48(8):745-53. PubMed ID: 20517710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media.
    Köber M; Moros M; Grazú V; de la Fuente JM; Luna M; Briones F
    Nanotechnology; 2012 Apr; 23(15):155501. PubMed ID: 22456180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro study of magnetic particle targeting in small blood vessels.
    Udrea LE; Strachan NJ; Bădescu V; Rotariu O
    Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Simulation of Magnetic Drug Targeting to the Stenosis Vessel Using Fe
    Badfar H; Yekani Motlagh S; Sharifi A
    Cardiovasc Eng Technol; 2020 Apr; 11(2):162-175. PubMed ID: 31853904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.
    Phenrat T; Saleh N; Sirk K; Tilton RD; Lowry GV
    Environ Sci Technol; 2007 Jan; 41(1):284-90. PubMed ID: 17265960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients.
    Rosická D; Sembera J
    Nanoscale Res Lett; 2013 Jan; 8(1):20. PubMed ID: 23302651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field.
    Takei T; Sakoguchi S; Yoshida M
    J Biosci Bioeng; 2018 Nov; 126(5):649-652. PubMed ID: 29914802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery.
    Van Durme R; Crevecoeur G; Dupré L; Coene A
    Drug Deliv; 2021 Dec; 28(1):63-76. PubMed ID: 33342319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of structure of iron nanoparticles in aggregates on their magnetic properties.
    Rosická D; Sembera J
    Nanoscale Res Lett; 2011 Sep; 6(1):527. PubMed ID: 21917152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.
    Wang Z; Guo Y; Li S; Sun Y; He N
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1797-802. PubMed ID: 18572580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces.
    Panina LV; Gurevich A; Beklemisheva A; Omelyanchik A; Levada K; Rodionova V
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.