These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33039923)

  • 1. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models.
    Huang L; Shen M; Liu T; Zhang Y; Wang Y
    J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.
    Xu M; Lerner AL; Funkenbusch PD; Richhariya A; Yoon G
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):287-296. PubMed ID: 29602301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study.
    Ariza-Gracia MÁ; Zurita JF; Piñero DP; Rodriguez-Matas JF; Calvo B
    PLoS One; 2015; 10(3):e0121486. PubMed ID: 25780915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Air Puff Tonometry Test Using Arbitrary Lagrangian-Eulerian (ALE) Deforming Mesh for Corneal Material Characterisation.
    Maklad O; Eliasy A; Chen KJ; Theofilis V; Elsheikh A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Finite element analysis of determining corneal biomechanical properties in vivo based on Corvis ST].
    Meng Q; Wang X; Chen W; Li X; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Aug; 37(4):608-613. PubMed ID: 32840077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models.
    Jannesari M; Kadkhodaei M; Mosaddegh P; Kasprzak H; Behrouz MJ
    Acta Bioeng Biomech; 2018; 20(1):39-48. PubMed ID: 29658515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Prediction of Air-Puff Induced Corneal Deformation Using LASIK, SMILE, and PRK Finite Element Simulations.
    Francis M; Khamar P; Shetty R; Sainani K; Nuijts RMMA; Haex B; Sinha Roy A
    Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5320-5328. PubMed ID: 30398623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive laws for biomechanical modeling of refractive surgery.
    Bryant MR; McDonnell PJ
    J Biomech Eng; 1996 Nov; 118(4):473-81. PubMed ID: 8950650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density.
    Whitford C; Studer H; Boote C; Meek KM; Elsheikh A
    J Mech Behav Biomed Mater; 2015 Feb; 42():76-87. PubMed ID: 25460928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm.
    Rahmati SM; Razaghi R; Karimi A
    J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new methodology for the in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea.
    Lago MA; Rupérez MJ; Martínez-Martínez F; Monserrat C; Larra E; Güell JL; Peris-Martínez C
    J Biomech; 2015 Jan; 48(1):38-43. PubMed ID: 25465193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models.
    Han Z; Sui X; Zhou D; Zhou C; Ren Q
    J Refract Surg; 2013 Apr; 29(4):282-90. PubMed ID: 23557227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis applied to cornea reshaping.
    Cabrera Fernández D; Niazy AM; Kurtz RM; Djotyan GP; Juhasz T
    J Biomed Opt; 2005; 10(6):064018. PubMed ID: 16409083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibrating corneal material model parameters using only inflation data: an ill-posed problem.
    Kok S; Botha N; Inglis HM
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1460-75. PubMed ID: 25112972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes.
    Sinha Roy A; Dupps WJ
    J Biomech Eng; 2011 Jan; 133(1):011002. PubMed ID: 21186892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.
    Simonini I; Pandolfi A
    J Mech Behav Biomed Mater; 2016 May; 58():75-89. PubMed ID: 26282384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal Viscous Properties Cannot Be Determined From Air-Puff Applanation.
    Francis M; Matalia H; Nuijts RMMA; Haex B; Shetty R; Sinha Roy A
    J Refract Surg; 2019 Nov; 35(11):730-736. PubMed ID: 31710375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.