These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33039974)

  • 1. Neutron-activated theranostic radionuclides for nuclear medicine.
    Tan HY; Yeong CH; Wong YH; McKenzie M; Kasbollah A; Md Shah MN; Perkins AC
    Nucl Med Biol; 2020; 90-91():55-68. PubMed ID: 33039974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of neutron-activated samarium-153-loaded polystyrene microspheres as a potential theranostic agent for hepatic radioembolization.
    Tan HY; Wong YH; Kasbollah A; Md Shah MN; Abdullah BJJ; Perkins AC; Yeong CH
    Nucl Med Commun; 2022 Apr; 43(4):410-422. PubMed ID: 35045548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theranostic approaches in nuclear medicine: current status and future prospects.
    Filippi L; Chiaravalloti A; Schillaci O; Cianni R; Bagni O
    Expert Rev Med Devices; 2020 Apr; 17(4):331-343. PubMed ID: 32157920
    [No Abstract]   [Full Text] [Related]  

  • 4. Reactor-produced radioisotopes from ORNL for bone pain palliation.
    Knapp FF; Mirzadeh S; Beets AL; O'Doherty M; Blower PJ; Verdera ES; Gaudiano JS; Kropp J; Guhlke J; Palmedo H; Biersack HJ
    Appl Radiat Isot; 1998 Apr; 49(4):309-15. PubMed ID: 9519440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience on the neutron activation of natural/enriched Re, Sm, and Ho nuclides in a reactor for the production of radiotherapeutic radionuclides.
    Ishfaq MM; Mushtaq A; Jawaid M
    Biol Trace Elem Res; 1999; 71-72():519-26. PubMed ID: 10676528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terbium radionuclides for theranostic applications in nuclear medicine: from atom to bedside.
    Van Laere C; Koole M; Deroose CM; de Voorde MV; Baete K; Cocolios TE; Duchemin C; Ooms M; Cleeren F
    Theranostics; 2024; 14(4):1720-1743. PubMed ID: 38389843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides.
    Morgan KA; Rudd SE; Noor A; Donnelly PS
    Chem Rev; 2023 Oct; 123(20):12004-12035. PubMed ID: 37796539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of Atomic and Nuclear Data for Biomedical Purposes.
    Holt PD
    Phys Med Biol; 1979 Jan; 24(1):1-17. PubMed ID: 432260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application.
    Müller C; Domnanich KA; Umbricht CA; van der Meulen NP
    Br J Radiol; 2018 Nov; 91(1091):20180074. PubMed ID: 29658792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhenium Radioisotopes for Medicine, a Focus on Production and Applications.
    Uccelli L; Martini P; Urso L; Ghirardi T; Marvelli L; Cittanti C; Carnevale A; Giganti M; Bartolomei M; Boschi A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutting edge rare earth radiometals: prospects for cancer theranostics.
    Sadler AWE; Hogan L; Fraser B; Rendina LM
    EJNMMI Radiopharm Chem; 2022 Aug; 7(1):21. PubMed ID: 36018527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming Nuclear Medicine with Nanoradiopharmaceuticals.
    Roy I; Krishnan S; Kabashin AV; Zavestovskaya IN; Prasad PN
    ACS Nano; 2022 Apr; 16(4):5036-5061. PubMed ID: 35294165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of activation cross sections of double neutron capture reaction on
    Madumarov AS; Aksenov NV; Bozhikov GA; Astakhov AA; Albin YV; Bulavin MV; Shabalin EP; Dmitriev SN
    Nucl Med Biol; 2024; 134-135():108928. PubMed ID: 38776715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear data for production and medical application of radionuclides: Present status and future needs.
    Qaim SM
    Nucl Med Biol; 2017 Jan; 44():31-49. PubMed ID: 27821344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods.
    Guerra Liberal FD; Tavares AA; Tavares JM
    Med Phys; 2014 Nov; 41(11):114101. PubMed ID: 25370676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic radionuclides: production and decay property considerations.
    Volkert WA; Goeckeler WF; Ehrhardt GJ; Ketring AR
    J Nucl Med; 1991 Jan; 32(1):174-85. PubMed ID: 1988628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theranostics in Nuclear Medicine: Emerging and Re-emerging Integrated Imaging and Therapies in the Era of Precision Oncology.
    Gomes Marin JF; Nunes RF; Coutinho AM; Zaniboni EC; Costa LB; Barbosa FG; Queiroz MA; Cerri GG; Buchpiguel CA
    Radiographics; 2020 Oct; 40(6):1715-1740. PubMed ID: 33001789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine.
    Pillai AM; Knapp FF
    Curr Radiopharm; 2015; 8(2):78-85. PubMed ID: 25771380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational nuclear research reactors in the Asia-Pacific with potential for medical radionuclide production.
    Tan HY; Wong YH; Kasbollah A; Md Shah MN; Perkins AC; Yeong CH
    Nucl Med Commun; 2023 Apr; 44(4):227-243. PubMed ID: 36808108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron-activatable needles for radionuclide therapy of solid tumors.
    Kim J; Narayan RJ; Lu X; Jay M
    J Biomed Mater Res A; 2017 Dec; 105(12):3273-3280. PubMed ID: 28804994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.