BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 33040254)

  • 21. ULTRA-WIDEFIELD MULTIMODAL IMAGING OF PRIMARY VITREORETINAL LYMPHOMA.
    Lavine JA; Singh AD; Sharma S; Baynes K; Lowder CY; Srivastava SK
    Retina; 2019 Oct; 39(10):1861-1871. PubMed ID: 30044267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Panoramic autofluorescence: highlighting retinal pathology.
    Slotnick S; Sherman J
    Optom Vis Sci; 2012 May; 89(5):E575-84. PubMed ID: 22446719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utility of Ultra-Widefield Retinal Imaging in the Follow-up and Management of Patients with Cytomegalovirus Retinitis.
    Liscombe-Sepúlveda JP; Alba-Linero C; Llorenç-Belles V; Adán-Civera A
    Ocul Immunol Inflamm; 2020 May; 28(4):659-664. PubMed ID: 31268742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wide-field fundus autofluorescence imaging in patients with hereditary retinal degeneration: a literature review.
    Oishi A; Miyata M; Numa S; Otsuka Y; Oishi M; Tsujikawa A
    Int J Retina Vitreous; 2019; 5(Suppl 1):23. PubMed ID: 31890285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UTILITY OF ULTRA-WIDEFIELD RETINAL IMAGING FOR THE STAGING AND MANAGEMENT OF SICKLE CELL RETINOPATHY.
    Han IC; Zhang AY; Liu TYA; Linz MO; Scott AW
    Retina; 2019 May; 39(5):836-843. PubMed ID: 29384996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa.
    Trichonas G; Traboulsi EI; Ehlers JP
    Ophthalmic Genet; 2017; 38(4):320-324. PubMed ID: 27880076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prevalence of peripheral abnormalities on ultra-widefield greenlight (532 nm) autofluorescence imaging at a tertiary care center.
    Heussen FM; Tan CS; Sadda SR
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6526-31. PubMed ID: 22871828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipofuscin- and melanin-related fundus autofluorescence in patients with submacular idiopathic choroidal neovascularization.
    Peng X; Zhang W
    Eye Sci; 2012 Sep; 27(3):138-42. PubMed ID: 22993059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Peripheral Retinal Changes on Ultra-Widefield Fundus Autofluorescence Images of Patients with Age-Related Macular Degeneration.
    Küçükiba K; Erol N; Bilgin M
    Turk J Ophthalmol; 2020 Mar; 50(1):6-14. PubMed ID: 32166942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-wide-field fundus autofluorescence in multiple evanescent white dot syndrome.
    Hashimoto H; Kishi S
    Am J Ophthalmol; 2015 Apr; 159(4):698-706. PubMed ID: 25634532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundus autofluorescence: applications and perspectives.
    Cuba J; Gómez-Ulla F
    Arch Soc Esp Oftalmol; 2013 Feb; 88(2):50-5. PubMed ID: 23433192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degenerative Peripheral Retinoschisis: Observations From Ultra-Widefield Fundus Imaging.
    Thanos A; Todorich B; Pasadhika S; Khundkar T; Xu D; Jain A; Ung C; Faia LJ; Capone A; Williams GA; Yonekawa Y; Sarraf D; Wolfe JD
    Ophthalmic Surg Lasers Imaging Retina; 2019 Sep; 50(9):557-564. PubMed ID: 31589753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical Coherence Tomography Angiography and Ultra-Widefield Optical Coherence Tomography in a Child With Incontinentia Pigmenti.
    Kim SJ; Yang J; Liu G; Huang D; Campbell JP
    Ophthalmic Surg Lasers Imaging Retina; 2018 Apr; 49(4):273-275. PubMed ID: 29664986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central serous chorioretinopathy fundus autofluorescence comparison with two different confocal scanning laser ophthalmoscopes.
    Nam KT; Yun CM; Kim JT; Yang KS; Kim HJ; Kim SW; Oh J; Huh K
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2121-7. PubMed ID: 25690981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundus autofluorescence imaging findings in retinal pigment epithelial tear.
    Karadimas P; Paleokastritis GP; Bouzas EA
    Eur J Ophthalmol; 2006; 16(5):767-9. PubMed ID: 17061235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomarkers in Usher syndrome: ultra-widefield fundus autofluorescence and optical coherence tomography findings and their correlation with visual acuity and electrophysiology findings.
    Mustafic N; Ristoldo F; Nguyen V; Fraser CL; Invernizzi A; Jamieson RV; Grigg JR
    Doc Ophthalmol; 2020 Dec; 141(3):205-215. PubMed ID: 32240425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fundus autofluorescence applications in retinal imaging.
    Gabai A; Veritti D; Lanzetta P
    Indian J Ophthalmol; 2015 May; 63(5):406-15. PubMed ID: 26139802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical Utility of Ultra-Widefield Imaging with the Optos Optomap Compared with Indirect Ophthalmoscopy in the Setting of Non-Traumatic Rhegmatogenous Retinal Detachment.
    Kornberg DL; Klufas MA; Yannuzzi NA; Orlin A; D'Amico DJ; Kiss S
    Semin Ophthalmol; 2016; 31(5):505-12. PubMed ID: 25517655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fundus Autofluorescence Imaging].
    Schmitz-Valckenberg S
    Klin Monbl Augenheilkd; 2015 Sep; 232(9):1050-3. PubMed ID: 26280647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.
    Zapata MA; Leila M; Teixidor T; Garcia-Arumi J
    Retina; 2015 Jun; 35(6):1202-10. PubMed ID: 25650707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.