BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 33040254)

  • 41. Ultra-widefield fundus autofluorescence in age-related macular degeneration.
    Guduru A; Fleischman D; Shin S; Zeng D; Baldwin JB; Houghton OM; Say EA
    PLoS One; 2017; 12(6):e0177207. PubMed ID: 28570556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-Term Follow-Up of Fundus Autofluorescence Imaging Using Wide-Field Scanning Laser Ophthalmoscopy.
    Duisdieker V; Fleckenstein M; Zilkens KM; Steinberg JS; Holz FG; Schmitz-Valckenberg S
    Ophthalmologica; 2015; 234(4):218-26. PubMed ID: 26394020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fundus autofluorescence imaging: review and perspectives.
    Schmitz-Valckenberg S; Holz FG; Bird AC; Spaide RF
    Retina; 2008 Mar; 28(3):385-409. PubMed ID: 18327131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome.
    Battaglia Parodi M; Iacono P; Falcomatà B; Bolognesi G; Bandello F
    Eur J Ophthalmol; 2015; 25(1):43-6. PubMed ID: 25363853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel Method of Quantifying Retinal Displacement Using Ultra-Widefield Fundus Autofluorescence Imaging.
    Bhambra N; Francisconi CLM; Marafon SB; Figueiredo NA; Juncal VR; Brosh K; Hillier RJ; Muni RH
    Am J Ophthalmol; 2022 Dec; 244():1-10. PubMed ID: 35870492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative autofluorescence: Review of Current Technical Aspects and Applications in Chorioretinal Disease.
    Deitch I; Ferenchak K; Miller JB
    Semin Ophthalmol; 2021 May; 36(4):346-350. PubMed ID: 33818290
    [No Abstract]   [Full Text] [Related]  

  • 48. The Role of Ultra-Widefield Fundus Imaging and Fluorescein Angiography in Diagnosis and Treatment of Diabetic Retinopathy.
    Cai S; Liu TYA
    Curr Diab Rep; 2021 Aug; 21(9):30. PubMed ID: 34448948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility and clinical utility of ultra-widefield indocyanine green angiography.
    Klufas MA; Yannuzzi NA; Pang CE; Srinivas S; Sadda SR; Freund KB; Kiss S
    Retina; 2015 Mar; 35(3):508-20. PubMed ID: 25250480
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TOXIC EFFECTS OF HYDROXYCHLOROQUINE ON THE CHOROID: Evidence From Multimodal Imaging.
    Ahn SJ; Ryu SJ; Lim HW; Lee BR
    Retina; 2019 May; 39(5):1016-1026. PubMed ID: 29373341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-Widefield Imaging for Pediatric Retinal Disease.
    Patel CK; Buckle M
    Asia Pac J Ophthalmol (Phila); 2018; 7(3):208-214. PubMed ID: 29888558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Autologous translocation of the choroid and retina pigment epitelial cells(RPE) in age-related macular degeneration: Monitoring the viability of choroid and RPE patch with indocyanine green angiography(ICGA) and fundus autofluorescence(FAF).
    Karasu B; Erdoğan G
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():318-323. PubMed ID: 31454718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confocal scanning laser ophthalmoscopy versus modified conventional fundus camera for fundus autofluorescence.
    Calvo-Maroto AM; Esteve-Taboada JJ; Domínguez-Vicent A; Pérez-Cambrodí RJ; Cerviño A
    Expert Rev Med Devices; 2016 Oct; 13(10):965-978. PubMed ID: 27634136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultra-Widefield Fundus Autofluorescence Imaging of Patients with Retinitis Pigmentosa: A Standardized Grading System in Different Genotypes.
    Hariri AH; Gui W; Datoo O'Keefe GA; Ip MS; Sadda SR; Gorin MB
    Ophthalmol Retina; 2018 Jul; 2(7):735-745. PubMed ID: 31047384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blue-Light Fundus Autofluorescence Imaging following Ruthenium-106 Brachytherapy for Choroidal Melanoma.
    Bindewald-Wittich A; Swenshon T; Carasco E; Dreyhaupt J; Willerding GD
    Ophthalmologica; 2020; 243(4):303-315. PubMed ID: 31940652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultra-Widefield Imaging in Patients with Angioid Streaks Secondary to Pseudoxanthoma Elasticum.
    Marchese A; Rabiolo A; Corbelli E; Carnevali A; Cicinelli MV; Giuffrè C; Querques G; Bandello F
    Ophthalmol Retina; 2017; 1(2):137-144. PubMed ID: 31047269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of early diabetic retinopathy severity using ultra-widefield Clarus versus conventional five-field and ultra-widefield Optos fundus imaging.
    Xiao Y; Dan H; Du X; Michaelide M; Nie X; Wang W; Zheng M; Wang D; Huang Z; Song Z
    Sci Rep; 2023 Oct; 13(1):17131. PubMed ID: 37816867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Case of Posterior Polar Hemispheric Choroidal Dystrophy Successfully Diagnosed With Ultra-Widefield Fundus Autofluorescence and Optical Coherence Tomography Angiography.
    Takano C; Ogura S; Ozeki H; Yasukawa T; Nozaki M
    Cureus; 2024 Mar; 16(3):e55878. PubMed ID: 38595870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. THE EFFECT OF PHOTOPIGMENT BLEACHING ON FUNDUS AUTOFLUORESCENCE IN ACUTE CENTRAL SEROUS CHORIORETINOPATHY.
    Choi KE; Yun C; Kim YH; Kim SW; Oh J; Huh K
    Retina; 2017 Mar; 37(3):568-577. PubMed ID: 27429375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intelligent Diagnosis of Multiple Peripheral Retinal Lesions in Ultra-widefield Fundus Images Based on Deep Learning.
    Wang T; Liao G; Chen L; Zhuang Y; Zhou S; Yuan Q; Han L; Wu S; Chen K; Wang B; Mi J; Gao Y; Lin J; Zhang M
    Ophthalmol Ther; 2023 Apr; 12(2):1081-1095. PubMed ID: 36692813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.