BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33040585)

  • 1. Use of Natural Language Processing to Improve Identification of Patients With Peripheral Artery Disease.
    Weissler EH; Zhang J; Lippmann S; Rusincovitch S; Henao R; Jones WS
    Circ Cardiovasc Interv; 2020 Oct; 13(10):e009447. PubMed ID: 33040585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.
    Afzal N; Sohn S; Abram S; Scott CG; Chaudhry R; Liu H; Kullo IJ; Arruda-Olson AM
    J Vasc Surg; 2017 Jun; 65(6):1753-1761. PubMed ID: 28189359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Portable Tool to Identify Patients With Atrial Fibrillation Using Clinical Notes From the Electronic Medical Record.
    Shah RU; Mutharasan RK; Ahmad FS; Rosenblatt AG; Gay HC; Steinberg BA; Yandell M; Tristani-Firouzi M; Klewer J; Mukherjee R; Lloyd-Jones DM
    Circ Cardiovasc Qual Outcomes; 2020 Oct; 13(10):e006516. PubMed ID: 33079591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle- and Toe-Brachial Index for Peripheral Artery Disease Identification: Unlocking Clinical Data Through Novel Methods.
    Friberg JE; Qazi AH; Boyle B; Franciscus C; Vaughan-Sarrazin M; Westerman D; Patterson OV; Parr SK; Matheny ME; Arya S; Smolderen KG; Lund BC; Gobbel GT; Girotra S
    Circ Cardiovasc Interv; 2022 Mar; 15(3):e011092. PubMed ID: 35176872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-Based Algorithms for Detecting Peripheral Artery Disease Using Administrative Data From an Electronic Health Record Data System: Algorithm Development Study.
    Weissler EH; Lippmann SJ; Smerek MM; Ward RA; Kansal A; Brock A; Sullivan RC; Long C; Patel MR; Greiner MA; Hardy NC; Curtis LH; Jones WS
    JMIR Med Inform; 2020 Aug; 8(8):e18542. PubMed ID: 32663152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data.
    Ross EG; Jung K; Dudley JT; Li L; Leeper NJ; Shah NH
    Circ Cardiovasc Qual Outcomes; 2019 Mar; 12(3):e004741. PubMed ID: 30857412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable Machine Learning for the Prediction of Amputation Risk Following Lower Extremity Infrainguinal Endovascular Interventions for Peripheral Arterial Disease.
    Cox M; Reid N; Panagides JC; Di Capua J; DeCarlo C; Dua A; Kalva S; Kalpathy-Cramer J; Daye D
    Cardiovasc Intervent Radiol; 2022 May; 45(5):633-640. PubMed ID: 35322303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of machine learning for the identification of peripheral artery disease and future mortality risk.
    Ross EG; Shah NH; Dalman RL; Nead KT; Cooke JP; Leeper NJ
    J Vasc Surg; 2016 Nov; 64(5):1515-1522.e3. PubMed ID: 27266594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence for the evaluation of peripheral artery disease using arterial Doppler waveforms to predict abnormal ankle-brachial index.
    McBane RD; Murphree DH; Liedl D; Lopez-Jimenez F; Attia IZ; Arruda-Olson A; Scott CG; Prodduturi N; Nowakowski SE; Rooke TW; Casanegra AI; Wysokinski WE; Swanson KE; Houghton DE; Bjarnason H; Wennberg PW
    Vasc Med; 2022 Aug; 27(4):333-342. PubMed ID: 35535982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening.
    Penfold RB; Carrell DS; Cronkite DJ; Pabiniak C; Dodd T; Glass AM; Johnson E; Thompson E; Arrighi HM; Stang PE
    BMC Med Inform Decis Mak; 2022 May; 22(1):129. PubMed ID: 35549702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Functional Status Impairment in People Living With Dementia Through Natural Language Processing of Clinical Documents: Cross-Sectional Study.
    Laurentiev J; Kim DH; Mahesri M; Wang KY; Bessette LG; York C; Zakoul H; Lee SB; Zhou L; Lin KJ
    J Med Internet Res; 2024 Feb; 26():e47739. PubMed ID: 38349732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(18):1-88. PubMed ID: 23074395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of surgical and endovascular infrainguinal and iliac procedures in the management of peripheral arterial disease using data from electronic medical records.
    Sussman M; Mallick R; Friedman M; Federico V; Josephs L; Vaitkus P; Menzin J
    J Vasc Interv Radiol; 2013 Mar; 24(3):378-91, 391.e1-3. PubMed ID: 23357568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of invasive treatment in lower extremity peripheral arterial disease.
    van Zitteren M; Vriens PW; Burger DH; de Fijter WM; Gerritsen GP; Heyligers JM; Nooren MJ; Smolderen KG
    J Vasc Surg; 2014 Feb; 59(2):400-408.e2. PubMed ID: 24461863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.