These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33041860)
1. Heat Shock Factor Is Involved in Regulating the Transcriptional Expression of Two Potential Hsps ( Jin J; Li Y; Zhou Z; Zhang H; Guo J; Wan F Front Physiol; 2020; 11():562204. PubMed ID: 33041860 [TBL] [Abstract][Full Text] [Related]
2. Regulatory Mechanism of Transcription Factor Jin J; Liu Y; Liang X; Pei Y; Wan F; Guo J Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328631 [No Abstract] [Full Text] [Related]
3. Induced Thermotolerance and Expression of Three Key Jin J; Zhao M; Wang Y; Zhou Z; Wan F; Guo J Front Physiol; 2019; 10():1593. PubMed ID: 31992993 [TBL] [Abstract][Full Text] [Related]
4. Induction of Heat Shock Protein Genes is the Hallmark of Egg Heat Tolerance in Agasicles hygrophila (Coleoptera: Chrysomelidae). Jia D; Liu YH; Zhang B; Ji ZY; Wang YX; Gao LL; Ma RY J Econ Entomol; 2020 Aug; 113(4):1972-1981. PubMed ID: 32449773 [TBL] [Abstract][Full Text] [Related]
5. Identification and Characterization of the Vitellogenin Receptor Gene and Its Role in Reproduction in the Alligatorweed Flea Beetle, Zhang H; Liu Y; Jin J; Zhou Z; Guo J Front Physiol; 2019; 10():969. PubMed ID: 31417427 [No Abstract] [Full Text] [Related]
6. Identification and Expression Patterns of Three Vitellogenin Genes and Their Roles in Reproduction of the Alligatorweed Flea Beetle Zhang H; Wang Y; Liu Y; Zhao M; Jin J; Zhou Z; Guo J Front Physiol; 2019; 10():368. PubMed ID: 31001144 [TBL] [Abstract][Full Text] [Related]
7. Heat sensitivity of eggs attributes to the reduction in Agasicles hygrophila population. Jia D; Yuan XF; Liu YH; Xu CQ; Wang YX; Gao LL; Ma RY Insect Sci; 2020 Feb; 27(1):159-169. PubMed ID: 29851277 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. Swindell WR; Huebner M; Weber AP BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference. Liu Y; Ye S; Erkine AM In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439 [TBL] [Abstract][Full Text] [Related]
10. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Fragkostefanakis S; Röth S; Schleiff E; Scharf KD Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670 [TBL] [Abstract][Full Text] [Related]
11. Sox genes in Agasicles hygrophila (Coleoptera: Chrysomelidae) are involved in ovarian development and oogenesis. Dong WY; Wang Y; Zhou ZS; Guo JY Arch Insect Biochem Physiol; 2020 Sep; 105(1):e21721. PubMed ID: 32557787 [TBL] [Abstract][Full Text] [Related]
12. Basal and dynamics mRNA expression of muscular HSP108, HSP90, HSF-1 and HSF-2 in thermally manipulated broilers during embryogenesis. Al-Zghoul MB; El-Bahr SM BMC Vet Res; 2019 Mar; 15(1):83. PubMed ID: 30849975 [TBL] [Abstract][Full Text] [Related]
13. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Lee JH; Hübel A; Schöffl F Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Hu W; Hu G; Han B Plant Sci; 2009 Apr; 176(4):583-90. PubMed ID: 26493149 [TBL] [Abstract][Full Text] [Related]
15. Hsf transcription factor gene family in peanut ( Wang Q; Zhang Z; Guo C; Zhao X; Li Z; Mou Y; Sun Q; Wang J; Yuan C; Li C; Cong P; Shan S Front Plant Sci; 2023; 14():1214732. PubMed ID: 37476167 [TBL] [Abstract][Full Text] [Related]
16. Analysis of transcriptional response to heat stress in Rhazya stricta. Obaid AY; Sabir JS; Atef A; Liu X; Edris S; El-Domyati FM; Mutwakil MZ; Gadalla NO; Hajrah NH; Al-Kordy MA; Hall N; Bahieldin A; Jansen RK BMC Plant Biol; 2016 Nov; 16(1):252. PubMed ID: 27842501 [TBL] [Abstract][Full Text] [Related]
17. Identification of cytochrome P450 monooxygenase genes and their expression in response to high temperature in the alligatorweed flea beetle Agasicles hygrophila (Coleoptera: Chrysomelidae). Zhang H; Zhao M; Liu Y; Zhou Z; Guo J Sci Rep; 2018 Dec; 8(1):17847. PubMed ID: 30552348 [TBL] [Abstract][Full Text] [Related]
18. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Prändl R; Hinderhofer K; Eggers-Schumacher G; Schöffl F Mol Gen Genet; 1998 May; 258(3):269-78. PubMed ID: 9645433 [TBL] [Abstract][Full Text] [Related]
19. Effects of periodic heat events on the reproduction and longevity of female and male Agasicles hygrophila (Coleoptera: Chrysomelidae). Jin J; Zhao M; Lv C; Wan F; Guo J Environ Entomol; 2024 Jun; 53(3):374-382. PubMed ID: 38484142 [TBL] [Abstract][Full Text] [Related]
20. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry. Liao WY; Lin LF; Jheng JL; Wang CC; Yang JH; Chou ML Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]