BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33042052)

  • 1. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics.
    Shi Z; Han C; Zhang X; Tian L; Wang L
    Front Microbiol; 2020; 11():539438. PubMed ID: 33042052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides.
    Shi Z; Gong W; Zhang L; Dai L; Chen G; Wang L
    Appl Biochem Biotechnol; 2019 Apr; 187(4):1515-1538. PubMed ID: 30267287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-xylanase from Thermomyces lanuginosus and its biobleaching application.
    Khucharoenphaisan K; Sinma K
    Pak J Biol Sci; 2010 Jun; 13(11):513-26. PubMed ID: 21848065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability of beta-xylanases produced by different Thermomyces lanuginosus strains.
    Singh S; Pillay B; Prior BA
    Enzyme Microb Technol; 2000 Apr; 26(7):502-508. PubMed ID: 10771053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.
    Gong W; Zhang H; Tian L; Liu S; Wu X; Li F; Wang L
    Electrophoresis; 2016 Jul; 37(12):1640-50. PubMed ID: 27060349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse.
    Gonçalves GA; Takasugi Y; Jia L; Mori Y; Noda S; Tanaka T; Ichinose H; Kamiya N
    Enzyme Microb Technol; 2015 May; 72():16-24. PubMed ID: 25837503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction and repression of beta-xylanase of Thermomyces lanuginosus TISTR 3465.
    Khucharoenphaisan K; Tokuyama S; Ratanakhanokchai K; Kitpreechavanich V
    Pak J Biol Sci; 2010 Mar; 13(5):209-15. PubMed ID: 20464942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry and genetics of actinomycete cellulases.
    Wilson DB
    Crit Rev Biotechnol; 1992; 12(1-2):45-63. PubMed ID: 1733521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76.
    Zhang S; Zhao S; Shang W; Yan Z; Wu X; Li Y; Chen G; Liu X; Wang L
    Biotechnol Biofuels; 2021 May; 14(1):118. PubMed ID: 33971954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermomyces lanuginosus is the dominant fungus in maize straw composts.
    Zhang L; Ma H; Zhang H; Xun L; Chen G; Wang L
    Bioresour Technol; 2015 Dec; 197():266-75. PubMed ID: 26342338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R
    Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metasecretome analysis of a lignocellulolytic microbial consortium grown on wheat straw, xylan and xylose.
    Jiménez DJ; Maruthamuthu M; van Elsas JD
    Biotechnol Biofuels; 2015; 8():199. PubMed ID: 26628913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs.
    Winger AM; Heazlewood JL; Chan LJ; Petzold CJ; Permaul K; Singh S
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1687-96. PubMed ID: 25223615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting.
    López MJ; Jurado MM; López-González JA; Estrella-González MJ; Martínez-Gallardo MR; Toribio A; Suárez-Estrella F
    Front Microbiol; 2021; 12():697480. PubMed ID: 34456885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose.
    Inoue H; Kishishita S; Kumagai A; Kataoka M; Fujii T; Ishikawa K
    Biotechnol Biofuels; 2015; 8():77. PubMed ID: 26000036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermostable and CBM2-linked GH10 xylanase from
    Wu X; Shi Z; Tian W; Liu M; Huang S; Liu X; Yin H; Wang L
    Front Bioeng Biotechnol; 2022; 10():939550. PubMed ID: 36091429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cellulolytic system of Thermobifida fusca.
    Gomez del Pulgar EM; Saadeddin A
    Crit Rev Microbiol; 2014 Aug; 40(3):236-47. PubMed ID: 23537325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail.
    Malgas S; Pletschke BI
    Enzyme Microb Technol; 2019 Mar; 122():74-81. PubMed ID: 30638511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose.
    Zhu N; Yang J; Ji L; Liu J; Yang Y; Yuan H
    Biotechnol Biofuels; 2016; 9():243. PubMed ID: 27833656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass.
    Bhalla A; Bischoff KM; Sani RK
    Front Bioeng Biotechnol; 2015; 3():84. PubMed ID: 26137456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.