These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 33042132)
1. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Chabab G; Barjon C; Bonnefoy N; Lafont V Front Immunol; 2020; 11():2186. PubMed ID: 33042132 [TBL] [Abstract][Full Text] [Related]
2. Prospects for immunotherapy of acute myeloid leukemia using γδ T cells. Halim L; Parente-Pereira AC; Maher J Immunotherapy; 2017 Jan; 9(2):111-114. PubMed ID: 28128710 [No Abstract] [Full Text] [Related]
3. γδ cells and tumor microenvironment: A helpful or a dangerous liason? Lo Presti E; Di Mitri R; Pizzolato G; Mocciaro F; Dieli F; Meraviglia S J Leukoc Biol; 2018 Mar; 103(3):485-492. PubMed ID: 29345336 [TBL] [Abstract][Full Text] [Related]
4. γδ T Cells in Tumor Microenvironment. Imbert C; Olive D Adv Exp Med Biol; 2020; 1273():91-104. PubMed ID: 33119877 [TBL] [Abstract][Full Text] [Related]
5. γδ T cells in cancer immunotherapy. Zou C; Zhao P; Xiao Z; Han X; Fu F; Fu L Oncotarget; 2017 Jan; 8(5):8900-8909. PubMed ID: 27823972 [TBL] [Abstract][Full Text] [Related]
6. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Lafont V; Sanchez F; Laprevotte E; Michaud HA; Gros L; Eliaou JF; Bonnefoy N Front Immunol; 2014; 5():622. PubMed ID: 25538706 [TBL] [Abstract][Full Text] [Related]
7. Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia. Sawaisorn P; Tangchaikeeree T; Chan-On W; Leepiyasakulchai C; Udomsangpetch R; Hongeng S; Jangpatarapongsa K Immunol Invest; 2019 Jan; 48(1):11-26. PubMed ID: 30321079 [TBL] [Abstract][Full Text] [Related]
8. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Paul S; Lal G Int J Cancer; 2016 Sep; 139(5):976-85. PubMed ID: 27012367 [TBL] [Abstract][Full Text] [Related]
9. Identification of a regulatory Vδ1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. Chabab G; Barjon C; Abdellaoui N; Salvador-Prince L; Dejou C; Michaud HA; Boissière-Michot F; Lopez-Crapez E; Jacot W; Pourquier D; Bonnefoy N; Lafont V J Leukoc Biol; 2020 Jun; 107(6):1057-1067. PubMed ID: 32362028 [TBL] [Abstract][Full Text] [Related]
10. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Galati D; Zanotta S; Bocchino M; De Filippi R; Pinto A Cancer Immunol Immunother; 2021 Jul; 70(7):1797-1809. PubMed ID: 33386466 [TBL] [Abstract][Full Text] [Related]
11. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Bartish M; Del Rincón SV; Rudd CE; Saragovi HU Front Immunol; 2020; 11():564499. PubMed ID: 33133075 [TBL] [Abstract][Full Text] [Related]
12. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Mirzaei HR; Mirzaei H; Lee SY; Hadjati J; Till BG Cancer Lett; 2016 Oct; 380(2):413-423. PubMed ID: 27392648 [TBL] [Abstract][Full Text] [Related]
13. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Li Y; Li G; Zhang J; Wu X; Chen X Front Immunol; 2020; 11():619954. PubMed ID: 33664732 [TBL] [Abstract][Full Text] [Related]
14. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Lopes N; McIntyre C; Martin S; Raverdeau M; Sumaria N; Kohlgruber AC; Fiala GJ; Agudelo LZ; Dyck L; Kane H; Douglas A; Cunningham S; Prendeville H; Loftus R; Carmody C; Pierre P; Kellis M; Brenner M; Argüello RJ; Silva-Santos B; Pennington DJ; Lynch L Nat Immunol; 2021 Feb; 22(2):179-192. PubMed ID: 33462452 [TBL] [Abstract][Full Text] [Related]
15. γδ T cell-based anticancer immunotherapy: progress and possibilities. Meraviglia S; Lo Presti E; Dieli F; Stassi G Immunotherapy; 2015; 7(9):949-51. PubMed ID: 26569071 [No Abstract] [Full Text] [Related]
16. Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression. Stolk D; van der Vliet HJ; de Gruijl TD; van Kooyk Y; Exley MA Front Immunol; 2018; 9():1990. PubMed ID: 30298063 [TBL] [Abstract][Full Text] [Related]
17. Current status and future applications of cellular therapies for cancer. Copier J; Bodman-Smith M; Dalgleish A Immunotherapy; 2011 Apr; 3(4):507-16. PubMed ID: 21463192 [TBL] [Abstract][Full Text] [Related]
18. Metabolic Changes in Tumor Microenvironment: How Could They Affect γδ T Cells Functions? Corsale AM; Di Simone M; Lo Presti E; Picone C; Dieli F; Meraviglia S Cells; 2021 Oct; 10(11):. PubMed ID: 34831116 [TBL] [Abstract][Full Text] [Related]
19. The use of BRM-activated killer cells in adoptive immunotherapy: a pilot study with nine advanced cancer patients. Ebina T; Fujimiya Y; Yamaguchi T; Ogama N; Sasaki H; Isono N; Suzuki Y; Katakura R; Tanaka K; Nagata K; Takano S; Tamura K; Uno K; Kishida T Biotherapy; 1998; 11(4):241-53. PubMed ID: 9950100 [TBL] [Abstract][Full Text] [Related]
20. TRAIL-Receptor 4 Modulates γδ T Cell-Cytotoxicity Toward Cancer Cells. Tawfik D; Groth C; Gundlach JP; Peipp M; Kabelitz D; Becker T; Oberg HH; Trauzold A; Wesch D Front Immunol; 2019; 10():2044. PubMed ID: 31555275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]