BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

726 related articles for article (PubMed ID: 33042155)

  • 1. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency.
    Macpherson ME; Hov JR; Ueland T; Dahl TB; Kummen M; Otterdal K; Holm K; Berge RK; Mollnes TE; Trøseid M; Halvorsen B; Aukrust P; Fevang B; Jørgensen SF
    Front Immunol; 2020; 11():574500. PubMed ID: 33042155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rifaximin alters gut microbiota profile, but does not affect systemic inflammation - a randomized controlled trial in common variable immunodeficiency.
    Jørgensen SF; Macpherson ME; Bjørnetrø T; Holm K; Kummen M; Rashidi A; Michelsen AE; Lekva T; Halvorsen B; Trøseid M; Mollnes TE; Berge RK; Yndestad A; Ueland T; Karlsen TH; Aukrust P; Hov JR; Fevang B
    Sci Rep; 2019 Jan; 9(1):167. PubMed ID: 30655568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered Plasma Fatty Acids Associate with Gut Microbial Composition in Common Variable Immunodeficiency.
    Skarpengland T; Macpherson ME; Hov JR; Kong XY; Bohov P; Halvorsen B; Fevang B; Berge RK; Aukrust P; Jørgensen SF
    J Clin Immunol; 2022 Jan; 42(1):146-157. PubMed ID: 34669143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia.
    Wang J; Gu X; Yang J; Wei Y; Zhao Y
    Front Cell Infect Microbiol; 2019; 9():409. PubMed ID: 31850241
    [No Abstract]   [Full Text] [Related]  

  • 5. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study.
    Fu BC; Hullar MAJ; Randolph TW; Franke AA; Monroe KR; Cheng I; Wilkens LR; Shepherd JA; Madeleine MM; Le Marchand L; Lim U; Lampe JW
    Am J Clin Nutr; 2020 Jun; 111(6):1226-1234. PubMed ID: 32055828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos.
    Mei Z; Chen GC; Wang Z; Usyk M; Yu B; Baeza YV; Humphrey G; Benitez RS; Li J; Williams-Nguyen JS; Daviglus ML; Hou L; Cai J; Zheng Y; Knight R; Burk RD; Boerwinkle E; Kaplan RC; Qi Q
    Am J Clin Nutr; 2021 Jun; 113(6):1503-1514. PubMed ID: 33709132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Plasma Levels of Triglyceride-Enriched Lipoproteins Associate with Systemic Inflammation, Lipopolysaccharides, and Gut Dysbiosis in Common Variable Immunodeficiency.
    Macpherson ME; Skarpengland T; Hov JR; Ranheim T; Vestad B; Dahl TB; Fraz MSA; Michelsen AE; Holven KB; Fevang B; Berge RK; Aukrust P; Halvorsen B; Jørgensen SF
    J Clin Immunol; 2023 Aug; 43(6):1229-1240. PubMed ID: 36995502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbial metabolite trimethylamine-N-oxide in association with inflammation and microbial dysregulation in three HIV cohorts at various disease stages.
    Missailidis C; Neogi U; Stenvinkel P; Trøseid M; Nowak P; Bergman P
    AIDS; 2018 Jul; 32(12):1589-1598. PubMed ID: 29620717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fecal Microbiome Composition Does Not Predict Diet-Induced TMAO Production in Healthy Adults.
    Ferrell M; Bazeley P; Wang Z; Levison BS; Li XS; Jia X; Krauss RM; Knight R; Lusis AJ; Garcia-Garcia JC; Hazen SL; Tang WHW
    J Am Heart Assoc; 2021 Nov; 10(21):e021934. PubMed ID: 34713713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial.
    Cho CE; Taesuwan S; Malysheva OV; Bender E; Tulchinsky NF; Yan J; Sutter JL; Caudill MA
    Mol Nutr Food Res; 2017 Jan; 61(1):. PubMed ID: 27377678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients.
    Xu KY; Xia GH; Lu JQ; Chen MX; Zhen X; Wang S; You C; Nie J; Zhou HW; Yin J
    Sci Rep; 2017 May; 7(1):1445. PubMed ID: 28469156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack.
    Yin J; Liao SX; He Y; Wang S; Xia GH; Liu FT; Zhu JJ; You C; Chen Q; Zhou L; Pan SY; Zhou HW
    J Am Heart Assoc; 2015 Nov; 4(11):. PubMed ID: 26597155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial but Not Fungal Gut Microbiota Alterations Are Associated With Common Variable Immunodeficiency (CVID) Phenotype.
    Fiedorová K; Radvanský M; Bosák J; Grombiříková H; Němcová E; Králíčková P; Černochová M; Kotásková I; Lexa M; Litzman J; Šmajs D; Freiberger T
    Front Immunol; 2019; 10():1914. PubMed ID: 31456808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene (
    Dalla Via A; Gargari G; Taverniti V; Rondini G; Velardi I; Gambaro V; Visconti GL; De Vitis V; Gardana C; Ragg E; Pinto A; Riso P; Guglielmetti S
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31881690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation.
    Jørgensen SF; Trøseid M; Kummen M; Anmarkrud JA; Michelsen AE; Osnes LT; Holm K; Høivik ML; Rashidi A; Dahl CP; Vesterhus M; Halvorsen B; Mollnes TE; Berge RK; Moum B; Lundin KE; Fevang B; Ueland T; Karlsen TH; Aukrust P; Hov JR
    Mucosal Immunol; 2016 Nov; 9(6):1455-1465. PubMed ID: 26982597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome.
    Smits LP; Kootte RS; Levin E; Prodan A; Fuentes S; Zoetendal EG; Wang Z; Levison BS; Cleophas MCP; Kemper EM; Dallinga-Thie GM; Groen AK; Joosten LAB; Netea MG; Stroes ESG; de Vos WM; Hazen SL; Nieuwdorp M
    J Am Heart Assoc; 2018 Mar; 7(7):. PubMed ID: 29581220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering the trimethylamine-producing bacteria of the human gut microbiota.
    Rath S; Heidrich B; Pieper DH; Vital M
    Microbiome; 2017 May; 5(1):54. PubMed ID: 28506279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice.
    Wu WK; Chen CC; Liu PY; Panyod S; Liao BY; Chen PC; Kao HL; Kuo HC; Kuo CH; Chiu THT; Chen RA; Chuang HL; Huang YT; Zou HB; Hsu CC; Chang TY; Lin CL; Ho CT; Yu HT; Sheen LY; Wu MS
    Gut; 2019 Aug; 68(8):1439-1449. PubMed ID: 30377191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic analysis of gut microbiota reveals its role in trimethylamine metabolism in heart failure.
    Emoto T; Hayashi T; Tabata T; Yamashita T; Watanabe H; Takahashi T; Gotoh Y; Kami K; Yoshida N; Saito Y; Tanaka H; Matsumoto K; Hayashi T; Yamada T; Hirata KI
    Int J Cardiol; 2021 Sep; 338():138-142. PubMed ID: 34102245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.
    Bielinska K; Radkowski M; Grochowska M; Perlejewski K; Huc T; Jaworska K; Motooka D; Nakamura S; Ufnal M
    Nutrition; 2018 Oct; 54():33-39. PubMed ID: 29705499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.