These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33042266)

  • 1. CRISPR-Sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells.
    Sun NH; Chen DY; Ye LP; Sheng G; Gong JJ; Chen BH; Lu YM; Han F
    Theranostics; 2020; 10(24):10993-11012. PubMed ID: 33042266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems.
    Yang LZ; Wang Y; Li SQ; Yao RW; Luan PF; Wu H; Carmichael GG; Chen LL
    Mol Cell; 2019 Dec; 76(6):981-997.e7. PubMed ID: 31757757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Single mRNAs in Live Neurons.
    Shim JY; Lee BH; Park HY
    Methods Mol Biol; 2019; 2038():47-61. PubMed ID: 31407277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-mediated transcriptional activation with synthetic guide RNA.
    Strezoska Ž; Dickerson SM; Maksimova E; Chou E; Gross MM; Hemphill K; Hardcastle T; Perkett M; Stombaugh J; Miller GW; Anderson EM; Vermeulen A; Smith AVB
    J Biotechnol; 2020 Aug; 319():25-35. PubMed ID: 32470463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems.
    Wu X; Ying Y; Mao S; Krueger CJ; Chen AK
    Methods Mol Biol; 2020; 2166():357-372. PubMed ID: 32710420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 System.
    Wang Y; Yang LZ; Chen LL
    STAR Protoc; 2020 Jun; 1(1):100037. PubMed ID: 33111085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA.
    Khosravi S; Dreissig S; Schindele P; Wolter F; Rutten T; Puchta H; Houben A
    Methods Mol Biol; 2020; 2166():343-356. PubMed ID: 32710419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA.
    Zhang Q; Fu Y; Thakur C; Bi Z; Wadgaonkar P; Qiu Y; Xu L; Rice M; Zhang W; Almutairy B; Chen F
    Biochem Biophys Res Commun; 2020 Jul; 528(1):54-61. PubMed ID: 32460957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
    Pham H; Kearns NA; Maehr R
    Methods Mol Biol; 2016; 1358():43-57. PubMed ID: 26463376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lighting Up Gene Activation in Living Drosophila Embryos.
    Fernandez C; Lagha M
    Methods Mol Biol; 2019; 2038():63-74. PubMed ID: 31407278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activatable CRISPR Transcriptional Circuits Generate Functional RNA for mRNA Sensing and Silencing.
    Ying ZM; Wang F; Chu X; Yu RQ; Jiang JH
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18599-18604. PubMed ID: 32633466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM; Boydston EA; Lourido S
    mSphere; 2021 Oct; 6(5):e0047421. PubMed ID: 34643425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Two Versions of the CRISPR-Sirius System for the Live-Cell Visualization of the Borders of Topologically Associating Domains.
    Viushkov VS; Lomov NA; Rubtsov MA
    Cells; 2024 Aug; 13(17):. PubMed ID: 39273012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
    Lin S; Ewen-Campen B; Ni X; Housden BE; Perrimon N
    Genetics; 2015 Oct; 201(2):433-42. PubMed ID: 26245833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable hierarchical-responsive nanoCRISPR elicits robust activation of endogenous target to treat cancer.
    Liu C; Wang N; Luo R; Li L; Yang W; Wang X; Shen M; Wu Q; Gong C
    Theranostics; 2021; 11(20):9833-9846. PubMed ID: 34815789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation by CRISPR/dCas9 in common wheat.
    Zhou H; Xu L; Li F; Li Y
    Gene; 2022 Jan; 807():145919. PubMed ID: 34454034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation.
    Liu XH; Li BR; Ying ZM; Tang LJ; Wang F; Jiang JH
    ACS Chem Biol; 2022 Jul; 17(7):1769-1777. PubMed ID: 35700146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.