BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 33042271)

  • 1. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer.
    Lin A; Zhang J; Luo P
    Front Immunol; 2020; 11():2039. PubMed ID: 32903444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer.
    Xiao J; Li W; Huang Y; Huang M; Li S; Zhai X; Zhao J; Gao C; Xie W; Qin H; Cai S; Bai Y; Lan P; Zou Y
    BMC Cancer; 2021 Mar; 21(1):282. PubMed ID: 33726687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study.
    Ding K; Zhou M; Wang H; Zhang S; Metaxas DN
    Lancet Digit Health; 2022 Nov; 4(11):e787-e795. PubMed ID: 36307192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of sex-biased ATRX mutation in female gastric cancer patients with enhanced immunotherapy-related anticancer immunity.
    Ge Y; Wei F; Du G; Fei G; Li W; Li X; Chu J; Wei P
    BMC Cancer; 2021 Mar; 21(1):240. PubMed ID: 33678158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer.
    Zaravinos A; Roufas C; Nagara M; de Lucas Moreno B; Oblovatskaya M; Efstathiades C; Dimopoulos C; Ayiomamitis GD
    J Exp Clin Cancer Res; 2019 Aug; 38(1):364. PubMed ID: 31429779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive model for high-frequency microsatellite instability in colorectal cancer patients over 50 years of age.
    Fujiyoshi K; Yamaguchi T; Kakuta M; Takahashi A; Arai Y; Yamada M; Yamamoto G; Ohde S; Takao M; Horiguchi SI; Natsume S; Kazama S; Nishizawa Y; Nishimura Y; Akagi Y; Sakamoto H; Akagi K
    Cancer Med; 2017 Jun; 6(6):1255-1263. PubMed ID: 28544821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A TGFβ-Dependent Stromal Subset Underlies Immune Checkpoint Inhibitor Efficacy in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Colorectal Cancer.
    Endo E; Okayama H; Saito K; Nakajima S; Yamada L; Ujiie D; Kase K; Fujita S; Endo H; Sakamoto W; Saito M; Saze Z; Momma T; Ohki S; Mimura K; Kono K
    Mol Cancer Res; 2020 Sep; 18(9):1402-1413. PubMed ID: 32493700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study.
    Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z
    Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aberrant expression of rhythm genes affects the genome instability and regulates the cancer immunity in pan-cancer.
    Zhou J; Li X; Zhang M; Gong J; Li Q; Shan B; Wang T; Zhang L; Zheng T; Li X
    Cancer Med; 2020 Mar; 9(5):1818-1829. PubMed ID: 31927791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with immune checkpoint inhibitors.
    Corti F; Lonardi S; Intini R; Salati M; Fenocchio E; Belli C; Borelli B; Brambilla M; Prete AA; Quarà V; Antista M; Fassan M; Morano F; Spallanzani A; Ambrosini M; Curigliano G; de Braud F; Zagonel V; Fucà G; Pietrantonio F
    Eur J Cancer; 2021 Jun; 150():155-167. PubMed ID: 33901794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RTP4 silencing provokes tumor-intrinsic resistance to immune checkpoint blockade in colorectal cancer.
    Yamamoto Y; Shimada S; Akiyama Y; Tsukihara S; Sugimoto R; Kabashima A; Tokunaga M; Kinugasa Y; Kawakami Y; Tanaka S
    J Gastroenterol; 2023 Jun; 58(6):540-553. PubMed ID: 36859628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma.
    Park C; Na KJ; Choi H; Ock CY; Ha S; Kim M; Park S; Keam B; Kim TM; Paeng JC; Park IK; Kang CH; Kim DW; Cheon GJ; Kang KW; Kim YT; Heo DS
    Theranostics; 2020; 10(23):10838-10848. PubMed ID: 32929383
    [No Abstract]   [Full Text] [Related]  

  • 19. An integrative in-silico analysis discloses a novel molecular subset of colorectal cancer possibly eligible for immune checkpoint immunotherapy.
    Sibilio P; Belardinilli F; Licursi V; Paci P; Giannini G
    Biol Direct; 2022 May; 17(1):10. PubMed ID: 35534873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Thomsen-Friedenreich Antigen in Colorectal Cancer and Association with Microsatellite Instability.
    Leão B; Wen X; Duarte HO; Gullo I; Gonçalves G; Pontes P; Castelli C; Diniz F; Mereiter S; Gomes J; Carneiro F; Reis CA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.