These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33042872)

  • 1. Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements.
    Parsley NC; Smythers AL; Hicks LM
    Front Cell Infect Microbiol; 2020; 10():547177. PubMed ID: 33042872
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Parsley NC; Sadecki PW; Hartmann CJ; Hicks LM
    J Nat Prod; 2019 Sep; 82(9):2537-2543. PubMed ID: 31464123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of bioactive cyclotides in somatic embryos of Viola odorata.
    Narayani M; Sai Varsha MKN; Potunuru UR; Sofi Beaula W; Rayala SK; Dixit M; Chadha A; Srivastava S
    Phytochemistry; 2018 Dec; 156():135-141. PubMed ID: 30292877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and high-throughput screening of antimicrobial peptides.
    Blondelle SE; Lohner K
    Curr Pharm Des; 2010; 16(28):3204-11. PubMed ID: 20687884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method.
    Lee WB; Fu CY; Chang WH; You HL; Wang CH; Lee MS; Lee GB
    Biosens Bioelectron; 2017 Jan; 87():669-678. PubMed ID: 27622941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic assay for continuous bacteria detection using antimicrobial peptides and isotachophoresis.
    Schwartz O; Bercovici M
    Anal Chem; 2014 Oct; 86(20):10106-13. PubMed ID: 25158068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing.
    Trinh TND; Lee NY
    Analyst; 2021 May; 146(10):3101-3113. PubMed ID: 33876805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the antimicrobial effects of semipurified cyclotides from Iranian Viola odorata against some of plant and human pathogenic bacteria.
    Zarrabi M; Dalirfardouei R; Sepehrizade Z; Kermanshahi RK
    J Appl Microbiol; 2013 Aug; 115(2):367-75. PubMed ID: 23800264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptidomics of Circular Cysteine-Rich Plant Peptides: Analysis of the Diversity of Cyclotides from Viola tricolor by Transcriptome and Proteome Mining.
    Hellinger R; Koehbach J; Soltis DE; Carpenter EJ; Wong GK; Gruber CW
    J Proteome Res; 2015 Nov; 14(11):4851-62. PubMed ID: 26399495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing.
    Li H; Torab P; Mach KE; Surrette C; England MR; Craft DW; Thomas NJ; Liao JC; Puleo C; Wong PK
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10270-10279. PubMed ID: 31068473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Medical Potential of Antimicrobial Peptides from Insects.
    Tonk M; Vilcinskas A
    Curr Top Med Chem; 2017; 17(5):554-575. PubMed ID: 27411327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tropical vibes from Sri Lanka - cyclotides from Viola betonicifolia by transcriptome and mass spectrometry analysis.
    Rajendran S; Slazak B; Mohotti S; Strömstedt AA; Göransson U; Hettiarachchi CM; Gunasekera S
    Phytochemistry; 2021 Jul; 187():112749. PubMed ID: 33932786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standard 96-well based high throughput microfluidic perfusion biofilm reactor for in situ optical analysis.
    McLeod D; Wei L; Li Z
    Biomed Microdevices; 2023 Jul; 25(3):26. PubMed ID: 37493818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Single-Cell Phenotyping of the Activity of Peptide-Based Antimicrobials.
    Cama J; Pagliara S
    Methods Mol Biol; 2021; 2208():237-253. PubMed ID: 32856267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery, isolation, and structural characterization of cyclotides from Viola sumatrana Miq.
    Niyomploy P; Chan LY; Poth AG; Colgrave ML; Sangvanich P; Craik DJ
    Biopolymers; 2016 Nov; 106(6):796-805. PubMed ID: 27403748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection.
    Jiang S; Deslouches B; Chen C; Di ME; Di YP
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.