BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33043181)

  • 1. Hybrid Gold Nanoparticle-Polyoxovanadate Matrices: A Novel Surface Enhanced Raman/Surface Enhanced Infrared Spectroscopy Substrate.
    Repp S; Lopez-Lorente ÁI; Mizaikoff B; Streb C
    ACS Omega; 2020 Oct; 5(39):25036-25041. PubMed ID: 33043181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars.
    Bibikova O; Haas J; López-Lorente AI; Popov A; Kinnunen M; Meglinski I; Mizaikoff B
    Analyst; 2017 Mar; 142(6):951-958. PubMed ID: 28229133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS).
    López-Lorente AI; Picca RA; Izquierdo J; Kranz C; Mizaikoff B; Di Franco C; Cárdenas S; Cioffi N; Palazzo G; Valentini A
    Mikrochim Acta; 2018 Feb; 185(2):153. PubMed ID: 29594679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyoxovanadate fabricated gold nanoparticles: Application in SERS.
    Baruah B; Miller TA
    J Colloid Interface Sci; 2017 Feb; 487():209-216. PubMed ID: 27771547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient metal nanoislands as a unified surface enhanced Raman scattering and surface enhanced infrared absorption platform for analytics.
    Gkogkou D; Shaykhutdinov T; Kratz C; Oates TWH; Hildebrandt P; Weidinger IM; Ly KH; Esser N; Hinrichs K
    Analyst; 2019 Sep; 144(17):5271-5276. PubMed ID: 31365006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles.
    Kavelin V; Fesenko O; Dubyna H; Vidal C; Klar TA; Hrelescu C; Dolgov L
    Nanoscale Res Lett; 2017 Dec; 12(1):197. PubMed ID: 28314363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy.
    Gao Y; Aspnes DE; Franzen S
    J Phys Chem A; 2022 Jan; 126(2):341-351. PubMed ID: 35005959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering.
    Johnston J; Taylor EN; Gilbert RJ; Webster TJ
    Int J Nanomedicine; 2016; 11():45-52. PubMed ID: 26730189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced vibrational spectroscopy of adsorbates on microemulsion synthesized gold nanoparticles.
    Fasasi A; Griffiths PR; Pan HB; Wai CM
    Appl Spectrosc; 2011 Jul; 65(7):741-5. PubMed ID: 21740634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation, characterization and surface-enhanced Raman properties of agarose gel/gold nanoparticles hybrid].
    Ma XY; Liu Y; Wang ZP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2126-31. PubMed ID: 25474948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used?
    Kokaislová A; Matějka P
    Anal Bioanal Chem; 2012 May; 403(4):985-93. PubMed ID: 22281680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Sulfur-Modified Capping Layer of Gold Nanoparticles Using Surface Enhanced Raman Spectroscopy (SERS) Effects.
    Prado AR; Souza DO; Oliveira JP; Pereira RHA; Guimarães MCC; Nogueira BV; Dixini PV; Ribeiro MRN; Pontes MJ
    Appl Spectrosc; 2017 Dec; 71(12):2670-2680. PubMed ID: 28714324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.