These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33043223)

  • 1. Predicting Drug-Induced Liver Injury Using Convolutional Neural Network and Molecular Fingerprint-Embedded Features.
    Nguyen-Vo TH; Nguyen L; Do N; Le PH; Nguyen TN; Nguyen BP; Le L
    ACS Omega; 2020 Oct; 5(39):25432-25439. PubMed ID: 33043223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints.
    Kim E; Nam H
    BMC Bioinformatics; 2017 May; 18(Suppl 7):227. PubMed ID: 28617228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation.
    Li T; Tong W; Roberts R; Liu Z; Thakkar S
    Chem Res Toxicol; 2021 Feb; 34(2):550-565. PubMed ID: 33356151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug-induced liver injury using graph attention mechanism and molecular fingerprints.
    Wang J; Zhang L; Sun J; Yang X; Wu W; Chen W; Zhao Q
    Methods; 2024 Jan; 221():18-26. PubMed ID: 38040204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks.
    Nguyen QH; Nguyen-Vo TH; Le NQK; Do TTT; Rahardja S; Nguyen BP
    BMC Genomics; 2019 Dec; 20(Suppl 9):951. PubMed ID: 31874637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach.
    Zhang H; Ding L; Zou Y; Hu SQ; Huang HG; Kong WB; Zhang J
    J Comput Aided Mol Des; 2016 Oct; 30(10):889-898. PubMed ID: 27640149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FP2VEC: a new molecular featurizer for learning molecular properties.
    Jeon W; Kim D
    Bioinformatics; 2019 Dec; 35(23):4979-4985. PubMed ID: 31070725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Successes and Failures of Clinical Trials With Outer Product-Based Convolutional Neural Network.
    Seo S; Kim Y; Han HJ; Son WC; Hong ZY; Sohn I; Shim J; Hwang C
    Front Pharmacol; 2021; 12():670670. PubMed ID: 34220508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.
    Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S
    BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of lossless molecular representations from fingerprints.
    Ucak UV; Ashyrmamatov I; Lee J
    J Cheminform; 2023 Feb; 15(1):26. PubMed ID: 36823647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay.
    Ali I; Welch MA; Lu Y; Swaan PW; Brouwer KLR
    Eur J Pharm Sci; 2017 May; 103():52-59. PubMed ID: 28238947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fPADnet: Small and Efficient Convolutional Neural Network for Presentation Attack Detection.
    Nguyen THB; Park E; Cui X; Nguyen VH; Kim H
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints.
    Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H
    Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-based integrated assay systems for the prediction of drug-induced liver injury.
    Kawaguchi M; Nukaga T; Sekine S; Takemura A; Susukida T; Oeda S; Kodama A; Hirota M; Kouzuki H; Ito K
    Toxicol Appl Pharmacol; 2020 May; 394():114958. PubMed ID: 32198022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man.
    Dragovic S; Vermeulen NP; Gerets HH; Hewitt PG; Ingelman-Sundberg M; Park BK; Juhila S; Snoeys J; Weaver RJ
    Arch Toxicol; 2016 Dec; 90(12):2979-3003. PubMed ID: 27659300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Wireless Fingerprint Indoor Localization Method Based on a Convolutional Neural Network.
    Liu Z; Dai B; Wan X; Li X
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652626
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.