BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33043277)

  • 1. A Radial Clutch Needle for Facile and Safe Tissue Compartment Access.
    O'Cearbhaill ED; Laulicht B; Mitchell N; Yu L; Valic M; Masiakos P; Karp JM
    Med Devices Sens; 2019; 2(5-6):. PubMed ID: 33043277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Precise application of Traditional Chinese Medicine in minimally-invasive techniques].
    Dong FH
    Zhongguo Gu Shang; 2018 Jun; 31(6):493-496. PubMed ID: 29945400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a mechanical clutch-based needle-insertion device.
    Bassett EK; Slocum AH; Masiakos PT; Pryor HI; Farokhzad OC; Karp JM
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5540-5. PubMed ID: 19307560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recommendations on the Use of Ultrasound Guidance for Central and Peripheral Vascular Access in Adults: A Position Statement of the Society of Hospital Medicine.
    Franco-Sadud R; Schnobrich D; Mathews BK; Candotti C; Abdel-Ghani S; Perez MG; Rodgers SC; Mader MJ; Haro EK; Dancel R; Cho J; Grikis L; Lucas BP; ; Soni NJ
    J Hosp Med; 2019 Sep; 14(9):E1-E22. PubMed ID: 31561287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safer trocar insertion for closed laparoscopic access: ex vivo assessment of an improved Veress needle.
    Nevler A; Har-Zahav G; Rosin D; Gutman M
    Surg Endosc; 2016 Feb; 30(2):779-782. PubMed ID: 26123325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laparoscopic needle-retrieval device for improving quality of care in minimally invasive surgery.
    Small AC; Gainsburg DM; Mercado MA; Link RE; Hedican SP; Palese MA
    J Am Coll Surg; 2013 Sep; 217(3):400-5. PubMed ID: 23707045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prospective evaluation of safety and success of a new method of introducing percutaneous paddle leads and complex arrays with an epidural access system.
    Deer T; Bowman R; Schocket SM; Kim C; Ranson M; Amirdelfan K; Raso L
    Neuromodulation; 2012; 15(1):21-9; discussion 29-30. PubMed ID: 22296616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Feasibility of Using a Smartphone Magnetometer for Assisting Needle Placement.
    Zhao Z; Xu S; Wood BJ; Ren H; Tse ZTH
    Ann Biomed Eng; 2020 Apr; 48(4):1147-1156. PubMed ID: 31832931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cone cracks in tissue-mimicking hydrogels during hypodermic needle insertion: the role of water content.
    M M; Bobji MS; Simha KRY
    Soft Matter; 2022 May; 18(18):3521-3530. PubMed ID: 35438127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immediate access dialysis graft designed to prevent needle-related complications: Results from the initial pre-clinical studies.
    Gage SM; Lawson M; Nichols C; Sycks D; Manson RJ; Knight JA
    J Vasc Access; 2020 May; 21(3):328-335. PubMed ID: 31526086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a safety resheathable winged steel needle for prevention of percutaneous injuries associated with intravascular-access procedures among healthcare workers.
    Mendelson MH; Lin-Chen BY; Solomon R; Bailey E; Kogan G; Goldbold J
    Infect Control Hosp Epidemiol; 2003 Feb; 24(2):105-12. PubMed ID: 12602692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Access techniques: Veress needle--initial blind trocar insertion versus open laparoscopy with the Hasson trocar.
    McKernan JB; Champion JK
    Endosc Surg Allied Technol; 1995 Feb; 3(1):35-8. PubMed ID: 7757437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing and Simulating Needle Insertion Forces for Percutaneous Renal Access.
    Poniatowski LH; Somani SS; Veneziano D; McAdams S; Sweet RM
    J Endourol; 2016 Oct; 30(10):1049-1055. PubMed ID: 27519947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optical "Veress-needle"--initial puncture with a minioptic.
    Schaller G; Kuenkel M; Manegold BC
    Endosc Surg Allied Technol; 1995 Feb; 3(1):55-7. PubMed ID: 7757441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-guided needle insertion robotic system for percutaneous puncture.
    Chen S; Wang F; Lin Y; Shi Q; Wang Y
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):475-484. PubMed ID: 33484429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.
    Gravett M; Cepek J; Fenster A
    Med Phys; 2017 Nov; 44(11):5544-5555. PubMed ID: 28849592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereotactic mechanical percutaneous renal access.
    Cadeddu JA; Stoianovici D; Chen RN; Moore RG; Kavoussi LR
    J Endourol; 1998 Apr; 12(2):121-5. PubMed ID: 9607436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of tissue damage from mosquito-inspired surgical needle.
    Gidde STR; Acharya SR; Kandel S; Pleshko N; Hutapea P
    Minim Invasive Ther Allied Technol; 2022 Oct; 31(7):1112-1121. PubMed ID: 35301909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle formation and risk of embolization during transseptal catheterization: comparison of standard transseptal needles and a new radiofrequency transseptal needle.
    Feld GK; Tiongson J; Oshodi G
    J Interv Card Electrophysiol; 2011 Jan; 30(1):31-6. PubMed ID: 21249439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and simulation investigation of surgical needle insertion into soft tissue mimic biomaterial for minimally invasive surgery (MIS).
    Barua R; Das S; Roy Chowdhury A; Datta P
    Proc Inst Mech Eng H; 2023 Feb; 237(2):254-264. PubMed ID: 36527297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.