These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 33043516)

  • 41. High-throughput RNA interference in functional genomics.
    Janitz M; Vanhecke D; Lehrach H
    Handb Exp Pharmacol; 2006; (173):97-104. PubMed ID: 16594612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prospects of RNA interference therapy for cancer.
    Pai SI; Lin YY; Macaes B; Meneshian A; Hung CF; Wu TC
    Gene Ther; 2006 Mar; 13(6):464-77. PubMed ID: 16341059
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNAi and HTS: exploring cancer by systematic loss-of-function.
    Willingham AT; Deveraux QL; Hampton GM; Aza-Blanc P
    Oncogene; 2004 Nov; 23(51):8392-400. PubMed ID: 15517021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Curing "incurable" cancer.
    Watson JD
    Cancer Discov; 2011 Nov; 1(6):477-80. PubMed ID: 22586652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges.
    Shao YT; Ma L; Zhang TH; Xu TR; Ye YC; Liu Y
    Curr Top Med Chem; 2019; 19(23):2143-2157. PubMed ID: 31456522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA interference in cancer.
    Gartel AL; Kandel ES
    Biomol Eng; 2006 Mar; 23(1):17-34. PubMed ID: 16466964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA interference and cancer therapy.
    Wang Z; Rao DD; Senzer N; Nemunaitis J
    Pharm Res; 2011 Dec; 28(12):2983-95. PubMed ID: 22009588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA interference and its current application in mammals.
    Shen WG
    Chin Med J (Engl); 2004 Jul; 117(7):1084-91. PubMed ID: 15265387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA interference and cancer: endogenous pathways and therapeutic approaches.
    Dykxhoorn DM; Chowdhury D; Lieberman J
    Adv Exp Med Biol; 2008; 615():299-329. PubMed ID: 18437900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.
    DeVincenzo JP
    Antivir Ther; 2012; 17(1 Pt B):213-25. PubMed ID: 22311654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA interference: new mechanisms for targeted treatment?
    Woessmann W; Damm-Welk C; Fuchs U; Borkhardt A
    Rev Clin Exp Hematol; 2003 Sep; 7(3):270-91. PubMed ID: 15024970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theranostic Nanoparticles for RNA-Based Cancer Treatment.
    Revia RA; Stephen ZR; Zhang M
    Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors.
    Fish RJ; Kruithof EK
    BMC Mol Biol; 2004 Aug; 5():9. PubMed ID: 15291968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA.
    Scherr M; Battmer K; Ganser A; Eder M
    Cell Cycle; 2003; 2(3):251-7. PubMed ID: 12734435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blocking cancer with RNA interference moves toward the clinic.
    Hede K
    J Natl Cancer Inst; 2005 May; 97(9):626-8. PubMed ID: 15870429
    [No Abstract]   [Full Text] [Related]  

  • 57. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression.
    He S; Zhang D; Cheng F; Gong F; Guo Y
    Mol Biol Rep; 2009 Nov; 36(8):2153-63. PubMed ID: 19117119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs.
    Hamada M; Ohtsuka T; Kawaida R; Koizumi M; Morita K; Furukawa H; Imanishi T; Miyagishi M; Taira K
    Antisense Nucleic Acid Drug Dev; 2002 Oct; 12(5):301-9. PubMed ID: 12477280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells.
    Cui L; Wang H; Ji Y; Yang J; Xu S; Huang X; Wang Z; Qin L; Tien P; Zhou X; Guo D; Chen Y
    J Virol; 2015 Sep; 89(17):9029-43. PubMed ID: 26085159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hit two birds with one stone: the multiple properties of (viral) RNA silencing suppressors.
    Bellott L; Gilmer D; Michel F
    Virologie (Montrouge); 2019 Dec; 23(6):38-60. PubMed ID: 31859262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.