These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 33043594)
1. Increasing Electrocatalytic Oxygen Evolution Efficiency through Cobalt-Induced Intrastructural Enhancement and Electronic Structure Modulation. Zhang X; Zhang L; Zhu Y; Li Z; Wang Y; Wågberg T; Hu G ChemSusChem; 2021 Jan; 14(1):467-478. PubMed ID: 33043594 [TBL] [Abstract][Full Text] [Related]
2. Mixed Metal Phosphide Chainmail Catalysts Confined in N-Doped Porous Carbon Nanoboxes as Highly Efficient Water-Oxidation Electrocatalysts with Ultralow Overpotentials and Tafel Slopes. Zhang X; Zhang L; Zhu GG; Zhu YX; Lu SY ACS Appl Mater Interfaces; 2020 Feb; 12(6):7153-7161. PubMed ID: 31913590 [TBL] [Abstract][Full Text] [Related]
3. Metal-organic framework derived hollow nitrogen-doped carbon sphere with cobalt phosphide in carbon nanotube for efficient oxygen evolution. Sun Q; Liu J; Ji X; Chen D; Guo Y; Mao L; Qian J J Colloid Interface Sci; 2023 Dec; 652(Pt B):1338-1346. PubMed ID: 37714748 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. Chen Q; Zhang Q; Liu H; Liang J; Peng W; Li Y; Zhang F; Fan X Small; 2021 Apr; 17(13):e2007858. PubMed ID: 33690975 [TBL] [Abstract][Full Text] [Related]
5. Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Zhu YX; Zhang L; Zhu GG; Zhang X; Lu SY Nanoscale; 2020 Mar; 12(10):5848-5856. PubMed ID: 32065202 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. Lin YC; Chuang CH; Hsiao LY; Yeh MH; Ho KC ACS Appl Mater Interfaces; 2020 Sep; 12(38):42634-42643. PubMed ID: 32845608 [TBL] [Abstract][Full Text] [Related]
7. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. Lin YC; Aulia S; Yeh MH; Hsiao LY; Tarigan AM; Ho KC J Colloid Interface Sci; 2023 Oct; 648():193-202. PubMed ID: 37301144 [TBL] [Abstract][Full Text] [Related]
8. Formation of Ni-Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. Nai J; Lu Y; Yu L; Wang X; Lou XWD Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922495 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical porous tri-metallic NiCoFe-Se/CFP derived from Ni-Co-Fe Prussian blue analogues as efficient electrocatalyst for oxygen evolution reaction. Guo Y; Jia K; Dai F; Liu Y; Zhang C; Su J; Wang K J Colloid Interface Sci; 2023 Jul; 642():638-647. PubMed ID: 37030200 [TBL] [Abstract][Full Text] [Related]
10. Hybrids of Cobalt/Iron Phosphides Derived from Bimetal-Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Zhang T; Du J; Xi P; Xu C ACS Appl Mater Interfaces; 2017 Jan; 9(1):362-370. PubMed ID: 27996250 [TBL] [Abstract][Full Text] [Related]
12. Core-Shell-Structured Prussian Blue Analogues Ternary Metal Phosphides as Efficient Bifunctional Electrocatalysts for OER and HER. Zhou X; Zi Y; Xu L; Li T; Yang J; Tang J Inorg Chem; 2021 Aug; 60(15):11661-11671. PubMed ID: 34282615 [TBL] [Abstract][Full Text] [Related]
13. Engineering Electronic and Morphological Structure of Metal-Organic-Framework-Derived Iron-Doped Ni Xing Z; Huang M; Yao Q; Feng G; Zhu J; Zhu QL; Lu ZH Inorg Chem; 2023 Jul; 62(30):11796-11808. PubMed ID: 37471103 [TBL] [Abstract][Full Text] [Related]
14. Hollow-structured cobalt sulfide electrocatalyst for alkaline oxygen evolution reaction: Rational tuning of electronic structure using iron and fluorine dual-doping strategy. Kim H; Min K; Song G; Kim J; Ham HC; Baeck SH J Colloid Interface Sci; 2024 Jul; 665():922-933. PubMed ID: 38569309 [TBL] [Abstract][Full Text] [Related]
15. PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Wang Y; Wang Y; Zhang L; Liu CS; Pang H Chem Asian J; 2019 Aug; 14(16):2790-2795. PubMed ID: 31246373 [TBL] [Abstract][Full Text] [Related]
16. Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Guo Y; Tang J; Wang Z; Sugahara Y; Yamauchi Y Small; 2018 Nov; 14(44):e1802442. PubMed ID: 30286273 [TBL] [Abstract][Full Text] [Related]
17. Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution. Wang M; Dong CL; Huang YC; Li Y; Shen S Small; 2018 Aug; 14(35):e1801756. PubMed ID: 30084542 [TBL] [Abstract][Full Text] [Related]
18. Plasma-Induced Oxygen Vacancies in N-Doped Hollow NiCoPBA Nanocages Derived from Prussian Blue Analogue for Efficient OER in Alkaline Media. Le HT; Lee JE; Yun SY; Kwon O; Park JK; Jeong YK Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298197 [TBL] [Abstract][Full Text] [Related]
19. Mesoporous Nanostructured Composite Derived from Thermal Treatment CoFe Prussian Blue Analogue Cages and Electrodeposited NiCo-S as an Efficient Electrocatalyst for an Oxygen Evolution Reaction. Hafezi Kahnamouei M; Shahrokhian S ACS Appl Mater Interfaces; 2020 Apr; 12(14):16250-16263. PubMed ID: 32096627 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-doped hollow, porous NiCoP nanocages derived from Ni-Co prussian blue analogs for oxygen evolution. Li D; Zhou C; Xing Y; Shi X; Ma W; Li L; Jiang D; Shi W Chem Commun (Camb); 2021 Aug; 57(66):8158-8161. PubMed ID: 34318798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]