These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
23. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Wang Z; Abdulla R; Parker B; Samanipour R; Ghosh S; Kim K Biofabrication; 2015 Dec; 7(4):045009. PubMed ID: 26696527 [TBL] [Abstract][Full Text] [Related]
24. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552 [TBL] [Abstract][Full Text] [Related]
25. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
27. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. Shopperly LK; Spinnen J; Krüger JP; Endres M; Sittinger M; Lam T; Kloke L; Dehne T J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2310-2322. PubMed ID: 35532378 [TBL] [Abstract][Full Text] [Related]
28. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Rizwan M; Chan SW; Comeau PA; Willett TL; Yim EKF Biomed Mater; 2020 Oct; 15(6):065017. PubMed ID: 32640427 [TBL] [Abstract][Full Text] [Related]
29. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Tanadchangsaeng N; Pasanaphong K; Tawonsawatruk T; Rattanapinyopituk K; Tangketsarawan B; Rawiwet V; Kongchanagul A; Srikaew N; Yoyruerop T; Panupinthu N; Sangpayap R; Panaksri A; Boonyagul S; Hemstapat R Sci Rep; 2024 Oct; 14(1):23240. PubMed ID: 39369014 [TBL] [Abstract][Full Text] [Related]
30. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
31. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
32. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Shi H; Li Y; Xu K; Yin J Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893 [TBL] [Abstract][Full Text] [Related]
33. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
34. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Young AT; White OC; Daniele MA Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384 [TBL] [Abstract][Full Text] [Related]
36. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
37. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
38. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]