These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33043931)
1. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation. Liu W; Liu D; Hu R; Huang Z; Sun M; Han K Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931 [TBL] [Abstract][Full Text] [Related]
2. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures. Huang C; Wippold JA; Stratis-Cullum D; Han A Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275 [TBL] [Abstract][Full Text] [Related]
3. Machine learning for microfluidic design and control. McIntyre D; Lashkaripour A; Fordyce P; Densmore D Lab Chip; 2022 Aug; 22(16):2925-2937. PubMed ID: 35904162 [TBL] [Abstract][Full Text] [Related]
4. A magnetically controlled microfluidic device for concentration dependent Yadav VK; Ganguly P; Mishra P; Das S; Mallick D Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390 [TBL] [Abstract][Full Text] [Related]
5. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration. Zhao S; Zhu K; Zhang Y; Zhu Z; Xu Z; Zhao M; Pan T Lab Chip; 2014 Nov; 14(22):4398-405. PubMed ID: 25242672 [TBL] [Abstract][Full Text] [Related]
6. High-throughput 3D microfluidic chip for generation of concentration gradients and mixture combinations. Zhao M; Yang J; Li Z; Zeng Y; Tao C; Dai B; Zhang D; Yamaguchi Y Lab Chip; 2024 Apr; 24(8):2280-2286. PubMed ID: 38506153 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Multilayer Microfluidic Arrays for Passive, Efficient DNA Trapping and Profiling. O'Keefe CM; Wang TJ Methods Mol Biol; 2023; 2679():315-322. PubMed ID: 37300626 [TBL] [Abstract][Full Text] [Related]
8. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection. Hasan MS; Sundberg C; Tolosa M; Andar A; Ge X; Kostov Y; Rao G Sci Rep; 2023 Jul; 13(1):12084. PubMed ID: 37495652 [TBL] [Abstract][Full Text] [Related]
9. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device. Liu D; Xuanyuan T; Liu X; Fu W; Liu W Front Bioeng Biotechnol; 2023; 11():1281375. PubMed ID: 38033813 [TBL] [Abstract][Full Text] [Related]
10. Secretion Function Analysis of Ex Vivo Immune Cells in an Integrated Microfluidic Device. Rodriguez-Moncayo R; Garcia-Cordero JL Methods Mol Biol; 2023; 2679():269-285. PubMed ID: 37300623 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin. Yang Y; Liu S; Chen C; Huang H; Tao L; Qian Z; Li W Biomed Microdevices; 2020 Sep; 22(4):70. PubMed ID: 32960346 [TBL] [Abstract][Full Text] [Related]
12. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Deliorman M; Ali DS; Qasaimeh MA Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Li SS; Xue CD; Li YJ; Chen XM; Zhao Y; Qin KR Electrophoresis; 2024 Jul; 45(13-14):1212-1232. PubMed ID: 37909658 [TBL] [Abstract][Full Text] [Related]
14. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Trujillo-de Santiago G; Flores-Garza BG; Tavares-Negrete JA; Lara-Mayorga IM; González-Gamboa I; Zhang YS; Rojas-Martínez A; Ortiz-López R; Álvarez MM Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514390 [TBL] [Abstract][Full Text] [Related]
15. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. Zath GK; Sperling RA; Hoffman CW; Bikos DA; Abbasi R; Abate AR; Weitz DA; Chang CB Lab Chip; 2022 Nov; 22(23):4735-4745. PubMed ID: 36367139 [TBL] [Abstract][Full Text] [Related]
16. 3D free-assembly modular microfluidics inspired by movable type printing. Huang S; Wu J; Zheng L; Long Y; Chen J; Li J; Dai B; Lin F; Zhuang S; Zhang D Microsyst Nanoeng; 2023; 9():111. PubMed ID: 37705925 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic-based platforms for cell-to-cell communication studies. Zhu L; Tang Q; Mao Z; Chen H; Wu L; Qin Y Biofabrication; 2023 Dec; 16(1):. PubMed ID: 38035370 [TBL] [Abstract][Full Text] [Related]
18. Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation. Shen S; Liu X; Fan K; Bai H; Li X; Li H Anal Chem; 2024 Jul; 96(28):11412-11421. PubMed ID: 38954777 [TBL] [Abstract][Full Text] [Related]
19. Recent advances of integrated microfluidic suspension cell culture system. Kerk YJ; Jameel A; Xing XH; Zhang C Eng Biol; 2021 Dec; 5(4):103-119. PubMed ID: 36970555 [TBL] [Abstract][Full Text] [Related]
20. Revolutionizing the female reproductive system research using microfluidic chip platform. Yan J; Wu T; Zhang J; Gao Y; Wu JM; Wang S J Nanobiotechnology; 2023 Dec; 21(1):490. PubMed ID: 38111049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]