These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33044063)

  • 1. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude
    Mohr B; Giannone RJ; Hettich RL; Doktycz MJ
    ACS Synth Biol; 2020 Nov; 9(11):2986-2997. PubMed ID: 33044063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.
    Karim AS; Jewett MC
    Metab Eng; 2016 Jul; 36():116-126. PubMed ID: 26996382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.
    Dudley QM; Anderson KC; Jewett MC
    ACS Synth Biol; 2016 Dec; 5(12):1578-1588. PubMed ID: 27476989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling cell-free metabolism through physiochemical perturbations.
    Karim AS; Heggestad JT; Crowe SA; Jewett MC
    Metab Eng; 2018 Jan; 45():86-94. PubMed ID: 29155060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving lysine production through construction of an Escherichia coli enzyme-constrained model.
    Ye C; Luo Q; Guo L; Gao C; Xu N; Zhang L; Liu L; Chen X
    Biotechnol Bioeng; 2020 Nov; 117(11):3533-3544. PubMed ID: 32648933
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Van Raad D; Huber T
    ACS Synth Biol; 2021 May; 10(5):1237-1244. PubMed ID: 33969993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic Conditioning of
    Tamiev BD; Dopp JL; Reuel NF
    ACS Synth Biol; 2021 Apr; 10(4):716-723. PubMed ID: 33760595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping.
    Rasor BJ; Vögeli B; Jewett MC; Karim AS
    Methods Mol Biol; 2022; 2433():199-215. PubMed ID: 34985746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits.
    Contreras-Llano LE; Meyer C; Liu Y; Sarker M; Lim S; Longo ML; Tan C
    Nat Commun; 2020 Jun; 11(1):3138. PubMed ID: 32561745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.
    Karim AS; Dudley QM; Juminaga A; Yuan Y; Crowe SA; Heggestad JT; Garg S; Abdalla T; Grubbe WS; Rasor BJ; Coar DN; Torculas M; Krein M; Liew FE; Quattlebaum A; Jensen RO; Stuart JA; Simpson SD; Köpke M; Jewett MC
    Nat Chem Biol; 2020 Aug; 16(8):912-919. PubMed ID: 32541965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and comparison of non-natural pathways for microbial phenol production.
    Thompson B; Machas M; Nielsen DR
    Biotechnol Bioeng; 2016 Aug; 113(8):1745-54. PubMed ID: 26804162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.