These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33044063)

  • 21. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A lysate proteome engineering strategy for enhancing cell-free metabolite production.
    Garcia DC; Dinglasan JLN; Shrestha H; Abraham PE; Hettich RL; Doktycz MJ
    Metab Eng Commun; 2021 Jun; 12():e00162. PubMed ID: 33552897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.
    Ninh PH; Honda K; Sakai T; Okano K; Ohtake H
    Biotechnol Bioeng; 2015 Jan; 112(1):189-96. PubMed ID: 25065559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-Free Expression of a Therapeutic Protein Serratiopeptidase.
    Meng Y; Yang M; Liu W; Li J
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering.
    Guo X; Li Z; Wang X; Wang J; Chala J; Lu Y; Zhang H
    Biotechnol Bioeng; 2019 Dec; 116(12):3349-3359. PubMed ID: 31529699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The growing impact of lyophilized cell-free protein expression systems.
    Hunt JP; Yang SO; Wilding KM; Bundy BC
    Bioengineered; 2017 Jul; 8(4):325-330. PubMed ID: 27791452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular co-culture engineering, a new approach for metabolic engineering.
    Zhang H; Wang X
    Metab Eng; 2016 Sep; 37():114-121. PubMed ID: 27242132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation.
    Tang S; Liao D; Li X; Lin Y; Han S; Zheng S
    ACS Synth Biol; 2021 Oct; 10(10):2417-2433. PubMed ID: 34529398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient tRNA degradation and quantification in Escherichia coli cell extract using RNase-coated magnetic beads: A key step toward codon emancipation.
    Salehi ASM; Smith MT; Schinn SM; Hunt JM; Muhlestein C; Diray-Arce J; Nielsen BL; Bundy BC
    Biotechnol Prog; 2017 Sep; 33(5):1401-1407. PubMed ID: 28593644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress of cell-free protein synthesis system and its applications in pharmaceutical engineering - A review].
    Jia X; Deng Z; Liu T
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):530-42. PubMed ID: 27382794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions.
    Colant N; Melinek B; Teneb J; Goldrick S; Rosenberg W; Frank S; Bracewell DG
    Biotechnol Prog; 2021 Jan; 37(1):e3062. PubMed ID: 32761750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purified cell-free systems as standard parts for synthetic biology.
    Matsubayashi H; Ueda T
    Curr Opin Chem Biol; 2014 Oct; 22():158-62. PubMed ID: 25438802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.
    Kunjapur AM; Hyun JC; Prather KL
    Microb Cell Fact; 2016 Apr; 15():61. PubMed ID: 27067813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].
    Li Y; Zhu J; Wang J; Xia H; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):41-50. PubMed ID: 27363197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.