These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33044063)

  • 41. Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry.
    Garenne D; Beisel CL; Noireaux V
    Rapid Commun Mass Spectrom; 2019 May; 33(11):1036-1048. PubMed ID: 30900355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis.
    Dudley QM; Karim AS; Nash CJ; Jewett MC
    Metab Eng; 2020 Sep; 61():251-260. PubMed ID: 32464283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Creating a completely "cell-free" system for protein synthesis.
    Smith MT; Bennett AM; Hunt JM; Bundy BC
    Biotechnol Prog; 2015; 31(6):1716-9. PubMed ID: 26289032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From Cells to Cell-Free Protein Synthesis within 24 Hours Using Cell-Free Autoinduction Workflow.
    Smith PEJ; Slouka T; Oza JP
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic Dynamics in
    Miguez AM; Zhang Y; Piorino F; Styczynski MP
    ACS Synth Biol; 2021 Sep; 10(9):2252-2265. PubMed ID: 34478281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liquid Chromatography Coupled to Refractive Index or Mass Spectrometric Detection for Metabolite Profiling in Lysate-based Cell-free Systems.
    Dinglasan JLN; Reeves DT; Hettich RL; Doktycz MJ
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elucidating the potential of crude cell extracts for producing pyruvate from glucose.
    Garcia DC; Mohr BP; Dovgan JT; Hurst GB; Standaert RF; Doktycz MJ
    Synth Biol (Oxf); 2018; 3(1):ysy006. PubMed ID: 32995514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production.
    Kang Z; Wang Q; Zhang H; Qi Q
    Appl Microbiol Biotechnol; 2008 May; 79(2):203-8. PubMed ID: 18347791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 31P and 13C nuclear magnetic resonance studies of metabolic pathways in Pasteurella multocida characterization of a new mannitol-producing metabolic pathway.
    Rager MN; Binet MR; Bouvet OM
    Eur J Biochem; 1999 Aug; 263(3):695-701. PubMed ID: 10469132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Yang JE; Choi YJ; Lee SJ; Kang KH; Lee H; Oh YH; Lee SH; Park SJ; Lee SY
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):95-104. PubMed ID: 24113828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
    Tyagi N; Saini D; Guleria R; Mukherjee KJ
    Mol Biotechnol; 2017 May; 59(4-5):168-178. PubMed ID: 28374116
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The E. coli S30 lysate proteome: A prototype for cell-free protein production.
    Foshag D; Henrich E; Hiller E; Schäfer M; Kerger C; Burger-Kentischer A; Diaz-Moreno I; García-Mauriño SM; Dötsch V; Rupp S; Bernhard F
    N Biotechnol; 2018 Jan; 40(Pt B):245-260. PubMed ID: 28943390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin.
    Zhuang L; Huang S; Liu WQ; Karim AS; Jewett MC; Li J
    Metab Eng; 2020 Jul; 60():37-44. PubMed ID: 32224263
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.
    Löffler M; Simen JD; Jäger G; Schäferhoff K; Freund A; Takors R
    Metab Eng; 2016 Nov; 38():73-85. PubMed ID: 27378496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.
    Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T
    Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).
    Merrick CA; Wardrope C; Paget JE; Colloms SD; Rosser SJ
    Methods Enzymol; 2016; 575():285-317. PubMed ID: 27417934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects.
    Wu WH; Wang FS; Chang MS
    BMC Syst Biol; 2011 Sep; 5():145. PubMed ID: 21929795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.
    Lee H; Kim BG; Kim M; Ahn JH
    J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.