BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33044222)

  • 1. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Optimization Method (HOM) Reconstruction with limited angle in Dual Energy Breast CT.
    Komolafe TE; Zhang C; Li M; Du Q; Zheng J; Yang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4875-4880. PubMed ID: 31946953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic CT: simulating low dose single and dual energy protocols from a dual energy scan.
    Wang AS; Pelc NJ
    Med Phys; 2011 Oct; 38(10):5551-62. PubMed ID: 21992373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.
    Murase K
    Med Phys; 2020 Apr; 47(4):1845-1859. PubMed ID: 32003025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensor decomposition and non-local means based spectral CT image denoising.
    Zhang Y; Salehjahromi M; Yu H
    J Xray Sci Technol; 2019; 27(3):397-416. PubMed ID: 31081796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical image-domain multimaterial decomposition for dual-energy CT.
    Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T
    Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction.
    Wang S; Wu W; Cai A; Xu Y; Vardhanabhuti V; Liu F; Yu H
    Quant Imaging Med Surg; 2023 Feb; 13(2):610-630. PubMed ID: 36819292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction.
    Landry G; Gaudreault M; van Elmpt W; Wildberger JE; Verhaegen F
    Z Med Phys; 2016 Mar; 26(1):75-87. PubMed ID: 26422576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced iteration image reconstruction of incomplete projection CT using regularization strategy through Lp norm dictionary learning.
    Gou J; Wu X; Dong H
    J Xray Sci Technol; 2019; 27(3):559-572. PubMed ID: 31177257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective sinogram inpainting for complementary limited-angle dual-energy computed tomography imaging using generative adversarial networks.
    Wang Y; Zhang W; Cai A; Wang L; Tang C; Feng Z; Li L; Liang N; Yan B
    J Xray Sci Technol; 2021; 29(1):37-61. PubMed ID: 33104055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.