These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Röderer G; Scola A; Schmölz W; Gebhard F; Windolf M; Hofmann-Fliri L Injury; 2013 Oct; 44(10):1327-32. PubMed ID: 23769470 [TBL] [Abstract][Full Text] [Related]
3. Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. Schliemann B; Seifert R; Rosslenbroich SB; Theisen C; Wähnert D; Raschke MJ; Weimann A J Shoulder Elbow Surg; 2015 Dec; 24(12):1968-73. PubMed ID: 26255200 [TBL] [Abstract][Full Text] [Related]
4. Screws with larger core diameter and lower thread pitch increase the stability of locked plating in osteoporotic proximal humeral fractures. Schliemann B; Risse N; Frank A; Müller M; Michel P; Raschke MJ; Katthagen JC Clin Biomech (Bristol); 2019 Mar; 63():21-26. PubMed ID: 30784787 [TBL] [Abstract][Full Text] [Related]
5. Locking plate fixation of humeral head fractures with a telescoping screw. A comparative biomechanical study versus a standard plate. Gradl G; Stedtfeld HW; Morlock M; Sellenschloh K; Püschel K; Mittlmeier T; Gradl G Injury; 2012 Jun; 43(6):734-8. PubMed ID: 21944432 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures. Katthagen JC; Schwarze M; Meyer-Kobbe J; Voigt C; Hurschler C; Lill H Clin Biomech (Bristol); 2014 Aug; 29(7):735-41. PubMed ID: 24997810 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical comparison of screw-based zones of a spatial subchondral support plate for proximal humerus fractures. Jabran A; Peach C; Zou Z; Ren L Proc Inst Mech Eng H; 2019 Mar; 233(3):372-382. PubMed ID: 30700217 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical evaluation of a new gliding screw concept for the fixation of proximal humeral fractures. Acklin YP; Zderic I; Inzana JA; Grechenig S; Schwyn R; Richards RG; Gueorguiev B Bone Joint Res; 2018 Jun; 7(6):422-429. PubMed ID: 30034796 [TBL] [Abstract][Full Text] [Related]
9. The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations. Fletcher JWA; Windolf M; Grünwald L; Richards RG; Gueorguiev B; Varga P Arch Orthop Trauma Surg; 2019 Aug; 139(8):1069-1074. PubMed ID: 30895465 [TBL] [Abstract][Full Text] [Related]
10. Intramedullary cortical bone strut improves the cyclic stability of osteoporotic proximal humeral fractures. Hsiao CK; Tsai YJ; Yen CY; Lee CH; Yang TY; Tu YK BMC Musculoskelet Disord; 2017 Feb; 18(1):64. PubMed ID: 28153021 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical study of Proximal humeral fracture fixation: Locking plate with medial support screw vs. locking plate with intramedullary fibular graft. Jang Y; Kim D Clin Biomech (Bristol); 2021 Dec; 90():105510. PubMed ID: 34673363 [TBL] [Abstract][Full Text] [Related]
12. Dynamic biomechanical investigation of a novel sulcus bicipitalis plate in combination with a conventional locking plate for the treatment of complex proximal humerus fractures. Wendler T; Fischer B; Schleifenbaum S; Theopold J; Hepp P Clin Biomech (Bristol); 2023 May; 105():105984. PubMed ID: 37156192 [TBL] [Abstract][Full Text] [Related]
13. Schuhli augmentation of plate and screw fixation for humeral shaft fractures: a laboratory study. Simon JA; Dennis MG; Kummer FJ; Koval KJ J Orthop Trauma; 1999; 13(3):196-9. PubMed ID: 10206251 [TBL] [Abstract][Full Text] [Related]
14. Comparative biomechanical study of two configurations of cemented screws in a simulated proximal humerus fracture fixed with locking plate. Martinez-Catalan N; Carrascal-Morillo MT; Bustos-Caballero A; Valencia M; Luengo G; Calvo E; Foruria AM Rev Esp Cir Ortop Traumatol; 2023; 67(4):263-270. PubMed ID: 36549560 [TBL] [Abstract][Full Text] [Related]
15. [Translated article] Comparative biomechanical study of two configurations of cemented screws in a simulated proximal humerus fracture fixed with locking plate. Martinez-Catalan N; Carrascal-Morillo MT; Bustos-Caballero A; Valencia M; Luengo G; Calvo E; Foruria AM Rev Esp Cir Ortop Traumatol; 2023; 67(4):T263-T270. PubMed ID: 36863517 [TBL] [Abstract][Full Text] [Related]
16. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: an experimental study of transverse tibial osteotomies in sheep. Richter H; Plecko M; Andermatt D; Frigg R; Kronen PW; Klein K; Nuss K; Ferguson SJ; Stöckle U; von Rechenberg B J Bone Joint Surg Am; 2015 Feb; 97(3):208-15. PubMed ID: 25653321 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical comparison of tuberosity-based proximal humeral locking plate compared to standard proximal humeral locking plate in varus cantilever bending. Saunders PE; Castaneda P; Walker R; McKee MD Injury; 2022 Nov; 53(11):3650-3654. PubMed ID: 36057488 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical Comparison of 3 Inferiorly Directed Versus 3 Superiorly Directed Locking Screws on Stability in a 3-Part Proximal Humerus Fracture Model. Donohue DM; Santoni BG; Stoops TK; Tanner G; Diaz MA; Mighell M J Orthop Trauma; 2018 Jun; 32(6):306-312. PubMed ID: 29401089 [TBL] [Abstract][Full Text] [Related]
19. The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Unger S; Erhart S; Kralinger F; Blauth M; Schmoelz W Injury; 2012 Oct; 43(10):1759-63. PubMed ID: 22824159 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical evaluation of hybrid double plate osteosynthesis using a locking plate and an inverted third tubular plate for the treatment of proximal humeral fractures. Theopold J; Schleifenbaum S; Müller M; Werner M; Hammer N; Josten C; Hepp P PLoS One; 2018; 13(10):e0206349. PubMed ID: 30372476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]